## More details about the configuration file can be found in: https://github.com/allwefantasy/auto-coder/tree/master/docs/en ## 关于配置文件的更多细节可以在这里找到: https://gitcode.com/allwefantasy11/auto-coder/tree/master/docs/zh ## Location of your project ## 你项目的路径 source_dir: /Users/dengwendi/Documents/project/template/ruoyi-ui ## The target file to store the prompt/generated code or other information target_file: /Users/dengwendi/Documents/project/template/ruoyi-ui/output.txt ## The urls of some documents which can help the model to understand your current work ## 一些文档的URL,可以帮助模型了解你当前的工作 ## Multiple documents can be separated by comma ## 多个文档可以用逗号分隔 # urls: ## The type of your project. py,ts or you can use the suffix e.g. .java .scala .go ## If you use the suffix, you can combind multiple types with comma e.g. .java,.scala ## 你项目的类型,py,ts或者你可以使用后缀,例如.java .scala .go ## 如果你使用后缀,你可以使用逗号来组合多个类型,例如.java,.scala project_type: py ## The model you want to drive AutoCoder to run model: gpt3_5_chat ## Enable the index building which can help you find the related files by your query ## 启用索引构建,可以帮助您通过查询找到相关文件 skip_build_index: false ## The model to build index for the project (Optional) ## 用于为项目构建索引的模型(可选) index_model: haiku_chat ## the filter level to find the related files ## 0: only find the files with the file name ## 1: find the files with the file name and the symbols in the file ## 2. find the related files reffered by the files in 0 and 1 ## 0 is recommended for the first time ## 用于查找相关文件的过滤级别 ## 0: 仅查找文件名 ## 1: 查找文件名和文件中的符号 ## 2. 查找0和1中的文件引用的相关文件 ## 第一次建议使用0 index_filter_level: 0 index_model_max_input_length: 30000 ## The number of workers to filter the files ## 过滤文件的线程数量 ## If you have a large project, you can increase this number ## 如果您有一个大项目,可以增加这个数字 ## Make sure you you have the proper workers when you use `byzerllm` to deploy model. ## 当您使用 `byzerllm` 部署模型时,请确保你也配置了合适的 num_workers 参数。 index_filter_workers: 1 ## The number of workers to build the index ## 构建索引的线程数量 ## If you have a large project, you can increase this number ## 如果您有一个大项目,可以增加这个数字 ## Make sure you you have the proper workers when you use `byzerllm` to deploy model. ## 当您使用 `byzerllm` 部署模型时,请确保你也配置了合适的 num_workers 参数。 index_build_workers: 1 ## enable RAG context ## 启用RAG上下文 enable_rag_context: false ## or you can give a query directly and enable the RAG at the same time ## 或者您可以直接给出一个查询,并同时启用RAG # enable_rag_context_query: YOUR QUERY TO GET SOME CONTEXT BY RAG ## enable Search Engine ## 启用搜索引擎 ## google/bing # search_engine: bing ## Get the search engine token in the environment variable ## 在环境变量中获取搜索引擎令牌 ## Ask for Bing Search API Token. You can visit https://www.microsoft.com/en-us/bing/apis/bing-web-search-api to get the token. ## 申请 Bing 搜索API Token。你可以访问 https://www.microsoft.com/en-us/bing/apis/bing-web-search-api 获取 token。 # search_engine_token: ENV ## The model to build index for the project ## 用于为项目构建索引的模型 # emb_model: gpt_emb ## The model will generate the code for you ## 模型将为您生成代码 execute: true ## If you want to generate multiple files, you can enable this option to generate the code in multiple rounds ## to avoid exceeding the maximum token limit of the model ## 如果您想生成多个文件,可以启用此选项,以便在多个回合中生成代码 ## 以避免超过模型的最大令牌限制 enable_multi_round_generate: false ## AutoCoder will merge the generated code into your project ## AutoCoder将合并生成的代码到您的项目中 auto_merge: true ## AutoCoder will ask you to deliver the content to the Web Model, ## then paste the answer back to the terminal ## AutoCoder将要求您将内容传递给Web模型,然后将答案粘贴回终端 human_as_model: true ## What you want the model to do ## 你想让模型做什么 query: | YOUR QUERY HERE ## You can execute this file with the following command ## And check the output in the target file ## 您可以使用以下命令执行此文件 ## 并在目标文件中检查输出 ## auto-coder --file 101_current_work.yml