237 lines
7.6 KiB
C++
237 lines
7.6 KiB
C++
/* Copyright (c) 2009, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License, version 2.0,
|
|
as published by the Free Software Foundation.
|
|
|
|
This program is also distributed with certain software (including
|
|
but not limited to OpenSSL) that is licensed under separate terms,
|
|
as designated in a particular file or component or in included license
|
|
documentation. The authors of MySQL hereby grant you an additional
|
|
permission to link the program and your derivative works with the
|
|
separately licensed software that they have included with MySQL.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License, version 2.0, for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
/*
|
|
rdtsc3 -- multi-platform timer code
|
|
|
|
When you run rdtsc3, it will print the contents of
|
|
"my_timer_info". The display indicates
|
|
what timer routine is best for a given platform.
|
|
|
|
For example, this is the display on production.mysql.com,
|
|
a 2.8GHz Xeon with Linux 2.6.17, gcc 3.3.3:
|
|
|
|
cycles nanoseconds microseconds milliseconds ticks
|
|
------------- ------------- ------------- ------------- -------------
|
|
1 11 13 18 17
|
|
2815019607 1000000000 1000000 1049 102
|
|
1 1000 1 1 1
|
|
88 4116 3888 4092 2044
|
|
|
|
The first line shows routines, e.g. 1 = MY_TIMER_ROUTINE_ASM_X86.
|
|
The second line shows frequencies, e.g. 2815019607 is nearly 2.8GHz.
|
|
The third line shows resolutions, e.g. 1000 = very poor resolution.
|
|
The fourth line shows overheads, e.g. ticks takes 2044 cycles.
|
|
*/
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "my_inttypes.h"
|
|
#include "my_rdtsc.h"
|
|
|
|
namespace mysys_my_rdtsc_unittest {
|
|
|
|
const int LOOP_COUNT = 100;
|
|
|
|
class RDTimeStampCounter : public ::testing::Test {
|
|
protected:
|
|
void SetUp() { test_init(); }
|
|
void test_init();
|
|
|
|
MY_TIMER_INFO myt;
|
|
};
|
|
|
|
void RDTimeStampCounter::test_init() {
|
|
my_timer_init(&myt);
|
|
|
|
fprintf(stdout, "----- Routine ---------------\n");
|
|
fprintf(stdout, "myt.cycles.routine : %13llu\n", myt.cycles.routine);
|
|
fprintf(stdout, "myt.nanoseconds.routine : %13llu\n",
|
|
myt.nanoseconds.routine);
|
|
fprintf(stdout, "myt.microseconds.routine : %13llu\n",
|
|
myt.microseconds.routine);
|
|
fprintf(stdout, "myt.milliseconds.routine : %13llu\n",
|
|
myt.milliseconds.routine);
|
|
fprintf(stdout, "myt.ticks.routine : %13llu\n", myt.ticks.routine);
|
|
|
|
fprintf(stdout, "----- Frequency -------------\n");
|
|
fprintf(stdout, "myt.cycles.frequency : %13llu\n",
|
|
myt.cycles.frequency);
|
|
fprintf(stdout, "myt.nanoseconds.frequency : %13llu\n",
|
|
myt.nanoseconds.frequency);
|
|
fprintf(stdout, "myt.microseconds.frequency : %13llu\n",
|
|
myt.microseconds.frequency);
|
|
fprintf(stdout, "myt.milliseconds.frequency : %13llu\n",
|
|
myt.milliseconds.frequency);
|
|
fprintf(stdout, "myt.ticks.frequency : %13llu\n",
|
|
myt.ticks.frequency);
|
|
|
|
fprintf(stdout, "----- Resolution ------------\n");
|
|
fprintf(stdout, "myt.cycles.resolution : %13llu\n",
|
|
myt.cycles.resolution);
|
|
fprintf(stdout, "myt.nanoseconds.resolution : %13llu\n",
|
|
myt.nanoseconds.resolution);
|
|
fprintf(stdout, "myt.microseconds.resolution : %13llu\n",
|
|
myt.microseconds.resolution);
|
|
fprintf(stdout, "myt.milliseconds.resolution : %13llu\n",
|
|
myt.milliseconds.resolution);
|
|
fprintf(stdout, "myt.ticks.resolution : %13llu\n",
|
|
myt.ticks.resolution);
|
|
|
|
fprintf(stdout, "----- Overhead --------------\n");
|
|
fprintf(stdout, "myt.cycles.overhead : %13llu\n",
|
|
myt.cycles.overhead);
|
|
fprintf(stdout, "myt.nanoseconds.overhead : %13llu\n",
|
|
myt.nanoseconds.overhead);
|
|
fprintf(stdout, "myt.microseconds.overhead : %13llu\n",
|
|
myt.microseconds.overhead);
|
|
fprintf(stdout, "myt.milliseconds.overhead : %13llu\n",
|
|
myt.milliseconds.overhead);
|
|
fprintf(stdout, "myt.ticks.overhead : %13llu\n", myt.ticks.overhead);
|
|
}
|
|
|
|
TEST_F(RDTimeStampCounter, TestCycle) {
|
|
ulonglong t1 = my_timer_cycles();
|
|
ulonglong t2;
|
|
int i;
|
|
int backward = 0;
|
|
int nonzero = 0;
|
|
|
|
for (i = 0; i < LOOP_COUNT; i++) {
|
|
t2 = my_timer_cycles();
|
|
if (t1 >= t2) backward++;
|
|
if (t2 != 0) nonzero++;
|
|
t1 = t2;
|
|
}
|
|
|
|
#if defined(__aarch64__)
|
|
/*
|
|
The ARM cycle timer can have low resolution, so backward can be
|
|
0 or >0 depending on machine.
|
|
*/
|
|
EXPECT_EQ(LOOP_COUNT, nonzero);
|
|
#else
|
|
/* Expect at most 1 backward, the cycle value can overflow */
|
|
EXPECT_TRUE((backward <= 1)) << "The cycle timer is strictly increasing";
|
|
#endif
|
|
|
|
if (myt.cycles.routine != 0)
|
|
EXPECT_TRUE((nonzero != 0)) << "The cycle timer is implemented";
|
|
else
|
|
EXPECT_TRUE((nonzero == 0))
|
|
<< "The cycle timer is not implemented and returns 0";
|
|
}
|
|
|
|
TEST_F(RDTimeStampCounter, TestNanosecond) {
|
|
ulonglong t1 = my_timer_nanoseconds();
|
|
ulonglong t2;
|
|
int i;
|
|
int backward = 0;
|
|
int nonzero = 0;
|
|
|
|
for (i = 0; i < LOOP_COUNT; i++) {
|
|
t2 = my_timer_nanoseconds();
|
|
if (t1 > t2) backward++;
|
|
if (t2 != 0) nonzero++;
|
|
t1 = t2;
|
|
}
|
|
|
|
EXPECT_TRUE((backward == 0)) << "The nanosecond timer is increasing";
|
|
|
|
if (myt.nanoseconds.routine != 0)
|
|
EXPECT_TRUE((nonzero != 0)) << "The nanosecond timer is implemented";
|
|
else
|
|
EXPECT_TRUE((nonzero == 0))
|
|
<< "The nanosecond timer is not implemented and returns 0";
|
|
}
|
|
|
|
TEST_F(RDTimeStampCounter, TestMicrosecond) {
|
|
ulonglong t1 = my_timer_microseconds();
|
|
ulonglong t2;
|
|
int i;
|
|
int backward = 0;
|
|
int nonzero = 0;
|
|
|
|
for (i = 0; i < LOOP_COUNT; i++) {
|
|
t2 = my_timer_microseconds();
|
|
if (t1 > t2) backward++;
|
|
if (t2 != 0) nonzero++;
|
|
t1 = t2;
|
|
}
|
|
|
|
EXPECT_TRUE((backward == 0)) << "The microsecond timer is increasing";
|
|
|
|
if (myt.microseconds.routine != 0)
|
|
EXPECT_TRUE((nonzero != 0)) << "The microsecond timer is implemented";
|
|
else
|
|
EXPECT_TRUE((nonzero == 0))
|
|
<< "The microsecond timer is not implemented and returns 0";
|
|
}
|
|
|
|
TEST_F(RDTimeStampCounter, TestMillisecond) {
|
|
ulonglong t1 = my_timer_milliseconds();
|
|
ulonglong t2;
|
|
int i;
|
|
int backward = 0;
|
|
int nonzero = 0;
|
|
|
|
for (i = 0; i < LOOP_COUNT; i++) {
|
|
t2 = my_timer_milliseconds();
|
|
if (t1 > t2) backward++;
|
|
if (t2 != 0) nonzero++;
|
|
t1 = t2;
|
|
}
|
|
|
|
EXPECT_TRUE((backward == 0)) << "The millisecond timer is increasing";
|
|
|
|
if (myt.milliseconds.routine != 0)
|
|
EXPECT_TRUE((nonzero != 0)) << "The millisecond timer is implemented";
|
|
else
|
|
EXPECT_TRUE((nonzero == 0))
|
|
<< "The millisecond timer is not implemented and returns 0";
|
|
}
|
|
|
|
TEST_F(RDTimeStampCounter, TestTick) {
|
|
ulonglong t1 = my_timer_ticks();
|
|
ulonglong t2;
|
|
int i;
|
|
int backward = 0;
|
|
int nonzero = 0;
|
|
|
|
for (i = 0; i < LOOP_COUNT; i++) {
|
|
t2 = my_timer_ticks();
|
|
if (t1 > t2) backward++;
|
|
if (t2 != 0) nonzero++;
|
|
t1 = t2;
|
|
}
|
|
|
|
EXPECT_TRUE((backward == 0)) << "The tick timer is increasing";
|
|
|
|
if (myt.ticks.routine != 0)
|
|
EXPECT_TRUE((nonzero != 0)) << "The tick timer is implemented";
|
|
else
|
|
EXPECT_TRUE((nonzero == 0))
|
|
<< "The tick timer is not implemented and returns 0";
|
|
}
|
|
|
|
} // namespace mysys_my_rdtsc_unittest
|