polardbxengine/storage/xengine/util/ib_ut0counter.h

286 lines
7.8 KiB
C++

/*****************************************************************************
Copyright (c) 2012, Oracle and/or its affiliates. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************/ /**
@file include/ut0counter.h
Counter utility class
Created 2012/04/12 by Sunny Bains
*******************************************************/
#ifndef UT0COUNTER_H
#define UT0COUNTER_H
#include "my_dbug.h"
#include <string.h>
#include <array>
#include <atomic>
#include <functional>
/** CPU cache line size */
#ifndef CACHE_LINE_SIZE
#define CACHE_LINE_SIZE 64
#endif
/** Default number of slots to use in ib_counter_t */
#define IB_N_SLOTS 64
#ifdef __WIN__
#define get_curr_thread_id() GetCurrentThreadId()
#else
#define get_curr_thread_id() pthread_self()
#endif
#define UT_ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
/** Get the offset into the counter array. */
template <typename Type, int N> struct generic_indexer_t {
/** Default constructor/destructor should be OK. */
/** @return offset within m_counter */
size_t offset(size_t index) const {
return (((index % N) + 1) * (CACHE_LINE_SIZE / sizeof(Type)));
}
};
#ifdef HAVE_SCHED_GETCPU
//#include <utmpx.h> // Including this causes problems with EMPTY symbol
#include <sched.h> // Include this instead
/** Use the cpu id to index into the counter array. If it fails then
use the thread id. */
template <typename Type, int N>
struct get_sched_indexer_t : public generic_indexer_t<Type, N> {
/** Default constructor/destructor should be OK. */
/* @return result from sched_getcpu(), the thread id if it fails. */
size_t get_rnd_index() const {
size_t cpu = sched_getcpu();
if (cpu == (size_t)-1) {
cpu = get_curr_thread_id();
}
return (cpu);
}
};
#endif /* HAVE_SCHED_GETCPU */
/** Use the thread id to index into the counter array. */
template <typename Type, int N>
struct thread_id_indexer_t : public generic_indexer_t<Type, N> {
/** Default constructor/destructor should are OK. */
/* @return a random number, currently we use the thread id. Where
thread id is represented as a pointer, it may not work as
effectively. */
size_t get_rnd_index() const { return get_curr_thread_id(); }
};
/** For counters wher N=1 */
template <typename Type, int N = 1> struct single_indexer_t {
/** Default constructor/destructor should are OK. */
/** @return offset within m_counter */
size_t offset(size_t index) const {
DBUG_ASSERT(N == 1);
return ((CACHE_LINE_SIZE / sizeof(Type)));
}
/* @return 1 */
size_t get_rnd_index() const {
DBUG_ASSERT(N == 1);
return (1);
}
};
/** Class for using fuzzy counters. The counter is not protected by any
mutex and the results are not guaranteed to be 100% accurate but close
enough. Creates an array of counters and separates each element by the
CACHE_LINE_SIZE bytes */
template <typename Type, int N = IB_N_SLOTS,
template <typename, int> class Indexer = thread_id_indexer_t>
class ib_counter_t {
public:
ib_counter_t() { memset(m_counter, 0x0, sizeof(m_counter)); }
~ib_counter_t() { DBUG_ASSERT(validate()); }
bool validate() {
#ifdef UNIV_DEBUG
size_t n = (CACHE_LINE_SIZE / sizeof(Type));
/* Check that we aren't writing outside our defined bounds. */
for (size_t i = 0; i < UT_ARRAY_SIZE(m_counter); i += n) {
for (size_t j = 1; j < n - 1; ++j) {
DBUG_ASSERT(m_counter[i + j] == 0);
}
}
#endif /* UNIV_DEBUG */
return (true);
}
/** If you can't use a good index id. Increment by 1. */
void inc() { add(1); }
/** If you can't use a good index id.
* @param n - is the amount to increment */
void add(Type n) {
size_t i = m_policy.offset(m_policy.get_rnd_index());
DBUG_ASSERT(i < UT_ARRAY_SIZE(m_counter));
m_counter[i] += n;
}
/** Use this if you can use a unique indentifier, saves a
call to get_rnd_index().
@param i - index into a slot
@param n - amount to increment */
void add(size_t index, Type n) {
size_t i = m_policy.offset(index);
DBUG_ASSERT(i < UT_ARRAY_SIZE(m_counter));
m_counter[i] += n;
}
/** If you can't use a good index id. Decrement by 1. */
void dec() { sub(1); }
/** If you can't use a good index id.
* @param - n is the amount to decrement */
void sub(Type n) {
size_t i = m_policy.offset(m_policy.get_rnd_index());
DBUG_ASSERT(i < UT_ARRAY_SIZE(m_counter));
m_counter[i] -= n;
}
/** Use this if you can use a unique indentifier, saves a
call to get_rnd_index().
@param i - index into a slot
@param n - amount to decrement */
void sub(size_t index, Type n) {
size_t i = m_policy.offset(index);
DBUG_ASSERT(i < UT_ARRAY_SIZE(m_counter));
m_counter[i] -= n;
}
/* @return total value - not 100% accurate, since it is not atomic. */
operator Type() const {
Type total = 0;
for (size_t i = 0; i < N; ++i) {
total += m_counter[m_policy.offset(i)];
}
return (total);
}
private:
/** Indexer into the array */
Indexer<Type, N> m_policy;
/** Slot 0 is unused. */
Type m_counter[(N + 1) * (CACHE_LINE_SIZE / sizeof(Type))];
};
/** Sharded atomic counter. */
namespace Counter {
using Type = uint64_t;
using N = std::atomic<Type>;
static_assert(CACHE_LINE_SIZE >= sizeof(N),
"Atomic counter size > CACHE_LINE_SIZE");
using Pad = char[CACHE_LINE_SIZE - sizeof(N)];
/** Counter shard. */
struct Shard {
/** Separate on cache line. */
Pad m_pad;
/** Sharded counter. */
N m_n{};
};
using Shards = std::array<Shard, 128>;
using Function = std::function<void(const Type)>;
/** Increment the counter of a shard by 1.
@param[in,out] shards Sharded counter to increment.
@param[in] id Shard key. */
inline void inc(Shards &shards, size_t id) {
shards[id % shards.size()].m_n.fetch_add(1, std::memory_order_relaxed);
}
/** Increment the counter for a shard by n.
@param[in,out] shards Sharded counter to increment.
@param[in] id Shard key.
@param[in] n Number to add. */
inline void add(Shards &shards, size_t id, size_t n) {
shards[id % shards.size()].m_n.fetch_add(n, std::memory_order_relaxed);
}
/** Get the counter value for a shard.
@param[in,out] shards Sharded counter to increment.
@param[in] id Shard key. */
inline Type get(const Shards &shards, size_t id) {
return (shards[id % shards.size()].m_n.load(std::memory_order_relaxed));
}
/** Iterate over the shards.
@param[in] shards Shards to iterate over
@param[in] f Callback function
@return total value. */
inline void for_each(const Shards &shards, Function &&f) {
for (const auto &shard : shards) {
f(shard.m_n);
}
}
/** Get the total value of all shards.
@param[in] shards Shards to sum.
@return total value. */
inline Type total(const Shards &shards) {
Type n = 0;
for_each(shards, [&](const Type count) { n += count; });
return (n);
}
/** Clear the counter - reset to 0.
@param[in,out] shards Shards to clear. */
inline void clear(Shards &shards) {
for (auto &shard : shards) {
shard.m_n.store(0, std::memory_order_relaxed);
}
}
} // namespace Counter
#endif /* UT0COUNTER_H */