polardbxengine/storage/innobase/row/row0uins.cc

504 lines
16 KiB
C++

/*****************************************************************************
Copyright (c) 1997, 2019, Oracle and/or its affiliates. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License, version 2.0, as published by the
Free Software Foundation.
This program is also distributed with certain software (including but not
limited to OpenSSL) that is licensed under separate terms, as designated in a
particular file or component or in included license documentation. The authors
of MySQL hereby grant you an additional permission to link the program and
your derivative works with the separately licensed software that they have
included with MySQL.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0,
for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*****************************************************************************/
/** @file row/row0uins.cc
Fresh insert undo
Created 2/25/1997 Heikki Tuuri
*******************************************************/
#include "row0uins.h"
#include "btr0btr.h"
#include "dict0boot.h"
#include "dict0crea.h"
#include "dict0dd.h"
#include "dict0dict.h"
#include "ibuf0ibuf.h"
#include "log0log.h"
#include "mach0data.h"
#include "que0que.h"
#include "row0log.h"
#include "row0row.h"
#include "row0undo.h"
#include "row0upd.h"
#include "row0vers.h"
#include "trx0rec.h"
#include "trx0roll.h"
#include "trx0trx.h"
#include "trx0undo.h"
/*************************************************************************
IMPORTANT NOTE: Any operation that generates redo MUST check that there
is enough space in the redo log before for that operation. This is
done by calling log_free_check(). The reason for checking the
availability of the redo log space before the start of the operation is
that we MUST not hold any synchonization objects when performing the
check.
If you make a change in this module make sure that no codepath is
introduced where a call to log_free_check() is bypassed. */
/** Removes a clustered index record. The pcur in node was positioned on the
record, now it is detached.
@return DB_SUCCESS or DB_OUT_OF_FILE_SPACE */
static MY_ATTRIBUTE((warn_unused_result)) dberr_t
row_undo_ins_remove_clust_rec(undo_node_t *node) /*!< in: undo node */
{
btr_cur_t *btr_cur;
ibool success;
dberr_t err;
ulint n_tries = 0;
mtr_t mtr;
dict_index_t *index = node->pcur.m_btr_cur.index;
bool online;
ut_ad(index->is_clustered());
ut_ad(node->trx->in_rollback);
mtr_start(&mtr);
dict_disable_redo_if_temporary(index->table, &mtr);
/* This is similar to row_undo_mod_clust(). The DDL thread may
already have copied this row from the log to the new table.
We must log the removal, so that the row will be correctly
purged. However, we can log the removal out of sync with the
B-tree modification. */
online = dict_index_is_online_ddl(index);
if (online) {
ut_ad(node->trx->dict_operation_lock_mode != RW_X_LATCH);
ut_ad(node->table->id != DICT_INDEXES_ID);
mtr_s_lock(dict_index_get_lock(index), &mtr);
}
success = btr_pcur_restore_position(
online ? BTR_MODIFY_LEAF | BTR_ALREADY_S_LATCHED : BTR_MODIFY_LEAF,
&node->pcur, &mtr);
ut_a(success);
btr_cur = btr_pcur_get_btr_cur(&node->pcur);
ut_ad(rec_get_trx_id(btr_cur_get_rec(btr_cur), btr_cur->index) ==
node->trx->id);
ut_ad(!rec_get_deleted_flag(btr_cur_get_rec(btr_cur),
dict_table_is_comp(btr_cur->index->table)));
if (online && dict_index_is_online_ddl(index)) {
const rec_t *rec = btr_cur_get_rec(btr_cur);
mem_heap_t *heap = NULL;
const ulint *offsets =
rec_get_offsets(rec, index, NULL, ULINT_UNDEFINED, &heap);
row_log_table_delete(node->trx, rec, node->row, index, offsets, NULL);
mem_heap_free(heap);
}
row_convert_impl_to_expl_if_needed(btr_cur, node);
if (btr_cur_optimistic_delete(btr_cur, 0, &mtr)) {
err = DB_SUCCESS;
goto func_exit;
}
btr_pcur_commit_specify_mtr(&node->pcur, &mtr);
retry:
/* If did not succeed, try pessimistic descent to tree */
mtr_start(&mtr);
dict_disable_redo_if_temporary(index->table, &mtr);
success = btr_pcur_restore_position(BTR_MODIFY_TREE | BTR_LATCH_FOR_DELETE,
&node->pcur, &mtr);
ut_a(success);
btr_cur_pessimistic_delete(&err, FALSE, btr_cur, 0, true, node->trx->id,
node->undo_no, node->rec_type, &mtr);
/* The delete operation may fail if we have little
file space left: TODO: easiest to crash the database
and restart with more file space */
if (err == DB_OUT_OF_FILE_SPACE && n_tries < BTR_CUR_RETRY_DELETE_N_TIMES) {
btr_pcur_commit_specify_mtr(&(node->pcur), &mtr);
n_tries++;
os_thread_sleep(BTR_CUR_RETRY_SLEEP_TIME);
goto retry;
}
func_exit:
btr_pcur_commit_specify_mtr(&node->pcur, &mtr);
return (err);
}
/** Removes a secondary index entry if found.
@param[in] mode BTR_MODIFY_LEAF or BTR_MODIFY_TREE,
depending on whether we wish optimistic or
pessimistic descent down the index tree
@param[in] index index
@param[in] entry index entry to remove
@param[in] thr query thread
@param[in] node undo node
@return DB_SUCCESS, DB_FAIL, or DB_OUT_OF_FILE_SPACE */
static MY_ATTRIBUTE((warn_unused_result)) dberr_t
row_undo_ins_remove_sec_low(ulint mode, dict_index_t *index,
dtuple_t *entry, que_thr_t *thr,
undo_node_t *node) {
btr_pcur_t pcur;
btr_cur_t *btr_cur;
dberr_t err = DB_SUCCESS;
mtr_t mtr;
enum row_search_result search_result;
ibool modify_leaf = false;
ulint rec_deleted;
log_free_check();
mtr_start(&mtr);
dict_disable_redo_if_temporary(index->table, &mtr);
if (mode == BTR_MODIFY_LEAF) {
mode = BTR_MODIFY_LEAF | BTR_ALREADY_S_LATCHED;
mtr_s_lock(dict_index_get_lock(index), &mtr);
modify_leaf = true;
} else {
ut_ad(mode == (BTR_MODIFY_TREE | BTR_LATCH_FOR_DELETE));
mtr_sx_lock(dict_index_get_lock(index), &mtr);
}
if (row_log_online_op_try(index, entry, 0)) {
goto func_exit_no_pcur;
}
if (dict_index_is_spatial(index)) {
if (mode & BTR_MODIFY_LEAF) {
mode |= BTR_RTREE_DELETE_MARK;
}
btr_pcur_get_btr_cur(&pcur)->thr = thr;
mode |= BTR_RTREE_UNDO_INS;
}
search_result = row_search_index_entry(index, entry, mode, &pcur, &mtr);
switch (search_result) {
case ROW_NOT_FOUND:
goto func_exit;
case ROW_FOUND:
break;
case ROW_BUFFERED:
case ROW_NOT_DELETED_REF:
/* These are invalid outcomes, because the mode passed
to row_search_index_entry() did not include any of the
flags BTR_INSERT, BTR_DELETE, or BTR_DELETE_MARK. */
ut_error;
}
rec_deleted = rec_get_deleted_flag(btr_pcur_get_rec(&pcur),
dict_table_is_comp(index->table));
if (search_result == ROW_FOUND && dict_index_is_spatial(index)) {
if (rec_deleted) {
ib::error(ER_IB_MSG_1036) << "Record found in index " << index->name
<< " is deleted marked on insert rollback.";
}
}
btr_cur = btr_pcur_get_btr_cur(&pcur);
if (rec_deleted == 0) {
/* This record is not delete marked and has an implicit
lock on it. For delete marked record, INSERT has not
modified it yet and we don't have implicit lock on it.
We must convert to explicit if and only if we have
implicit lock on the record.*/
row_convert_impl_to_expl_if_needed(btr_cur, node);
}
if (modify_leaf) {
err = btr_cur_optimistic_delete(btr_cur, 0, &mtr) ? DB_SUCCESS : DB_FAIL;
} else {
/* Passing rollback=false here, because we are
deleting a secondary index record: the distinction
only matters when deleting a record that contains
externally stored columns. */
ut_ad(!index->is_clustered());
btr_cur_pessimistic_delete(&err, FALSE, btr_cur, 0, false, 0, 0, 0, &mtr);
}
func_exit:
btr_pcur_close(&pcur);
func_exit_no_pcur:
mtr_commit(&mtr);
return (err);
}
/** Removes a secondary index entry from the index if found. Tries first
optimistic, then pessimistic descent down the tree.
@param[in] index index
@param[in] entry index entry to insert
@param[in] thr query thread
@param[in] node undo node
@return DB_SUCCESS or DB_OUT_OF_FILE_SPACE */
static MY_ATTRIBUTE((warn_unused_result)) dberr_t
row_undo_ins_remove_sec(dict_index_t *index, dtuple_t *entry,
que_thr_t *thr, undo_node_t *node) {
dberr_t err;
ulint n_tries = 0;
/* Try first optimistic descent to the B-tree */
err = row_undo_ins_remove_sec_low(BTR_MODIFY_LEAF, index, entry, thr, node);
if (err == DB_SUCCESS) {
return (err);
}
/* Try then pessimistic descent to the B-tree */
retry:
err = row_undo_ins_remove_sec_low(BTR_MODIFY_TREE | BTR_LATCH_FOR_DELETE,
index, entry, thr, node);
/* The delete operation may fail if we have little
file space left: TODO: easiest to crash the database
and restart with more file space */
if (err != DB_SUCCESS && n_tries < BTR_CUR_RETRY_DELETE_N_TIMES) {
n_tries++;
os_thread_sleep(BTR_CUR_RETRY_SLEEP_TIME);
goto retry;
}
return (err);
}
/** Parses the row reference and other info in a fresh insert undo record.
@param[in,out] node row undo node
@param[in] thd THD associated with the node
@param[in,out] mdl MDL ticket or nullptr if unnecessary */
static void row_undo_ins_parse_undo_rec(undo_node_t *node, THD *thd,
MDL_ticket **mdl) {
dict_index_t *clust_index;
byte *ptr;
undo_no_t undo_no;
table_id_t table_id;
ulint type;
ulint dummy;
bool dummy_extern;
type_cmpl_t type_cmpl;
ut_ad(node);
ptr = trx_undo_rec_get_pars(node->undo_rec, &type, &dummy, &dummy_extern,
&undo_no, &table_id, type_cmpl);
ut_ad(type == TRX_UNDO_INSERT_REC);
node->rec_type = type;
node->update = NULL;
node->table = dd_table_open_on_id(table_id, thd, mdl, false, true);
/* Skip the UNDO if we can't find the table or the .ibd file. */
if (node->table == NULL) {
} else if (node->table->ibd_file_missing) {
close_table:
dd_table_close(node->table, thd, mdl, false);
node->table = NULL;
} else {
ut_ad(!node->table->skip_alter_undo);
clust_index = node->table->first_index();
if (clust_index != NULL) {
ptr = trx_undo_rec_get_row_ref(ptr, clust_index, &node->ref, node->heap);
if (!row_undo_search_clust_to_pcur(node)) {
goto close_table;
}
if (node->table->n_v_cols) {
trx_undo_read_v_cols(node->table, ptr, node->row, false, false, nullptr,
node->heap);
}
} else {
ib::warn(ER_IB_MSG_1037) << "Table " << node->table->name
<< " has no indexes,"
" ignoring the table";
goto close_table;
}
}
}
/** Removes a secondary index entry from the index, which is built on
multi-value field, if found. For each value, it tries first optimistic,
then pessimistic descent down the tree.
@param[in,out] index multi-value index
@param[in] node undo node
@param[in] thr query thread
@param[in,out] heap memory heap
@return DB_SUCCESS or error code */
static dberr_t row_undo_ins_remove_multi_sec(dict_index_t *index,
undo_node_t *node, que_thr_t *thr,
mem_heap_t *heap) {
dberr_t err = DB_SUCCESS;
Multi_value_entry_builder_normal mv_entry_builder(node->row, node->ext, index,
heap, true, false);
ut_ad(index->is_multi_value());
for (dtuple_t *entry = mv_entry_builder.begin(); entry != nullptr;
entry = mv_entry_builder.next()) {
err = row_undo_ins_remove_sec(index, entry, thr, node);
if (UNIV_UNLIKELY(err != DB_SUCCESS)) {
break;
}
}
return (err);
}
/** Removes secondary index records.
@return DB_SUCCESS or DB_OUT_OF_FILE_SPACE */
static MY_ATTRIBUTE((warn_unused_result)) dberr_t
row_undo_ins_remove_sec_rec(undo_node_t *node, /*!< in/out: row undo node */
que_thr_t *thr) /*!< in: query thread */
{
dberr_t err = DB_SUCCESS;
dict_index_t *index = node->index;
mem_heap_t *heap;
heap = mem_heap_create(1024);
while (index != NULL) {
dtuple_t *entry;
if (index->type & DICT_FTS) {
dict_table_next_uncorrupted_index(index);
continue;
}
if (index->is_multi_value()) {
err = row_undo_ins_remove_multi_sec(index, node, thr, heap);
if (err != DB_SUCCESS) {
goto func_exit;
}
mem_heap_empty(heap);
dict_table_next_uncorrupted_index(index);
continue;
}
/* An insert undo record TRX_UNDO_INSERT_REC will
always contain all fields of the index. It does not
matter if any indexes were created afterwards; all
index entries can be reconstructed from the row. */
entry = row_build_index_entry(node->row, node->ext, index, heap);
if (UNIV_UNLIKELY(!entry)) {
/* The database must have crashed after
inserting a clustered index record but before
writing all the externally stored columns of
that record, or a statement is being rolled
back because an error occurred while storing
off-page columns.
Because secondary index entries are inserted
after the clustered index record, we may
assume that the secondary index record does
not exist. */
} else {
err = row_undo_ins_remove_sec(index, entry, thr, node);
if (UNIV_UNLIKELY(err != DB_SUCCESS)) {
goto func_exit;
}
}
mem_heap_empty(heap);
dict_table_next_uncorrupted_index(index);
}
func_exit:
node->index = index;
mem_heap_free(heap);
return (err);
}
/** Undoes a fresh insert of a row to a table. A fresh insert means that
the same clustered index unique key did not have any record, even delete
marked, at the time of the insert. InnoDB is eager in a rollback:
if it figures out that an index record will be removed in the purge
anyway, it will remove it in the rollback.
@return DB_SUCCESS or DB_OUT_OF_FILE_SPACE */
dberr_t row_undo_ins(undo_node_t *node, /*!< in: row undo node */
que_thr_t *thr) /*!< in: query thread */
{
dberr_t err;
MDL_ticket *mdl = nullptr;
ut_ad(node->state == UNDO_NODE_INSERT);
ut_ad(node->trx->in_rollback);
ut_ad(trx_undo_roll_ptr_is_insert(node->roll_ptr));
THD *thd = dd_thd_for_undo(node->trx);
row_undo_ins_parse_undo_rec(node, thd,
dd_mdl_for_undo(node->trx) ? &mdl : nullptr);
if (node->table == NULL) {
return (DB_SUCCESS);
}
/* Iterate over all the indexes and undo the insert.*/
node->index = node->table->first_index();
ut_ad(node->index->is_clustered());
/* Skip the clustered index (the first index) */
node->index = node->index->next();
dict_table_skip_corrupt_index(node->index);
err = row_undo_ins_remove_sec_rec(node, thr);
if (err == DB_SUCCESS) {
log_free_check();
// FIXME: We need to update the dict_index_t::space and
// page number fields too.
err = row_undo_ins_remove_clust_rec(node);
}
dd_table_close(node->table, thd, &mdl, false);
node->table = NULL;
return (err);
}