6549 lines
212 KiB
C++
6549 lines
212 KiB
C++
/*****************************************************************************
|
|
|
|
Copyright (c) 1997, 2019, Oracle and/or its affiliates. All Rights Reserved.
|
|
Copyright (c) 2008, Google Inc.
|
|
|
|
Portions of this file contain modifications contributed and copyrighted by
|
|
Google, Inc. Those modifications are gratefully acknowledged and are described
|
|
briefly in the InnoDB documentation. The contributions by Google are
|
|
incorporated with their permission, and subject to the conditions contained in
|
|
the file COPYING.Google.
|
|
|
|
This program is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License, version 2.0, as published by the
|
|
Free Software Foundation.
|
|
|
|
This program is also distributed with certain software (including but not
|
|
limited to OpenSSL) that is licensed under separate terms, as designated in a
|
|
particular file or component or in included license documentation. The authors
|
|
of MySQL hereby grant you an additional permission to link the program and
|
|
your derivative works with the separately licensed software that they have
|
|
included with MySQL.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0,
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*****************************************************************************/
|
|
|
|
/** @file row/row0sel.cc
|
|
Select
|
|
|
|
Created 12/19/1997 Heikki Tuuri
|
|
*******************************************************/
|
|
|
|
#include "row0sel.h"
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include "btr0btr.h"
|
|
#include "btr0cur.h"
|
|
#include "btr0sample.h"
|
|
#include "btr0sea.h"
|
|
#include "buf0lru.h"
|
|
#include "dict0boot.h"
|
|
#include "dict0dd.h"
|
|
#include "dict0dict.h"
|
|
#include "eval0eval.h"
|
|
#include "gis0rtree.h"
|
|
#include "ha_innodb.h"
|
|
#include "ha_prototypes.h"
|
|
#include "handler.h"
|
|
#include "lob0lob.h"
|
|
#include "lob0undo.h"
|
|
#include "lock0lock.h"
|
|
#include "mach0data.h"
|
|
#include "pars0pars.h"
|
|
#include "pars0sym.h"
|
|
#include "que0que.h"
|
|
#include "read0read.h"
|
|
#include "record_buffer.h"
|
|
#include "rem0cmp.h"
|
|
#include "row0mysql.h"
|
|
#include "row0row.h"
|
|
#include "row0upd.h"
|
|
#include "row0vers.h"
|
|
#include "srv0mon.h"
|
|
#include "trx0trx.h"
|
|
#include "trx0undo.h"
|
|
#include "ut0new.h"
|
|
|
|
#include "my_dbug.h"
|
|
|
|
#include "lizard0dict.h"
|
|
#include "lizard0cleanout.h"
|
|
#include "lizard0undo.h"
|
|
#include "lizard0gp.h"
|
|
|
|
/** Maximum number of rows to prefetch; MySQL interface has another parameter */
|
|
#define SEL_MAX_N_PREFETCH 16
|
|
|
|
/** Number of rows fetched, after which to start prefetching; MySQL interface
|
|
has another parameter */
|
|
#define SEL_PREFETCH_LIMIT 1
|
|
|
|
/** When a select has accessed about this many pages, it returns control back
|
|
to que_run_threads: this is to allow canceling runaway queries */
|
|
|
|
#define SEL_COST_LIMIT 100
|
|
|
|
/** Flags for search shortcut */
|
|
#define SEL_FOUND 0
|
|
#define SEL_EXHAUSTED 1
|
|
#define SEL_RETRY 2
|
|
|
|
/** Returns TRUE if the user-defined column in a secondary index record
|
|
is alphabetically the same as the corresponding BLOB column in the clustered
|
|
index record.
|
|
NOTE: the comparison is NOT done as a binary comparison, but character
|
|
fields are compared with collation!
|
|
@return true if the columns are equal */
|
|
static ibool row_sel_sec_rec_is_for_blob(
|
|
trx_t *trx, /*!< in: the operating transaction */
|
|
ulint mtype, /*!< in: main type */
|
|
ulint prtype, /*!< in: precise type */
|
|
ulint mbminmaxlen, /*!< in: minimum and maximum length of
|
|
a multi-byte character */
|
|
const byte *clust_field, /*!< in: the locally stored part of
|
|
the clustered index column, including
|
|
the BLOB pointer; the clustered
|
|
index record must be covered by
|
|
a lock or a page latch to protect it
|
|
against deletion (rollback or purge) */
|
|
ulint clust_len, /*!< in: length of clust_field */
|
|
const byte *sec_field, /*!< in: column in secondary index */
|
|
ulint sec_len, /*!< in: length of sec_field */
|
|
ulint prefix_len, /*!< in: index column prefix length
|
|
in bytes */
|
|
dict_table_t *table) /*!< in: table */
|
|
{
|
|
ulint len;
|
|
byte buf[REC_VERSION_56_MAX_INDEX_COL_LEN];
|
|
|
|
/* This function should never be invoked on tables in
|
|
ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT, because they
|
|
should always contain enough prefix in the clustered index record. */
|
|
ut_ad(dict_table_has_atomic_blobs(table));
|
|
ut_a(clust_len >= BTR_EXTERN_FIELD_REF_SIZE);
|
|
ut_ad(prefix_len >= sec_len);
|
|
ut_ad(prefix_len > 0);
|
|
ut_a(prefix_len <= sizeof buf);
|
|
|
|
if (!memcmp(clust_field + clust_len - BTR_EXTERN_FIELD_REF_SIZE,
|
|
field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)) {
|
|
/* The externally stored field was not written yet.
|
|
This record should only be seen by
|
|
trx_rollback_or_clean_all_recovered() or any
|
|
TRX_ISO_READ_UNCOMMITTED transactions. */
|
|
return (FALSE);
|
|
}
|
|
|
|
len = lob::btr_copy_externally_stored_field_prefix(
|
|
trx, table->first_index(), buf, prefix_len,
|
|
dict_tf_get_page_size(table->flags), clust_field,
|
|
dict_table_is_sdi(table->id), clust_len);
|
|
|
|
if (len == 0) {
|
|
/* The BLOB was being deleted as the server crashed.
|
|
There should not be any secondary index records
|
|
referring to this clustered index record, because
|
|
btr_free_externally_stored_field() is called after all
|
|
secondary index entries of the row have been purged. */
|
|
return (FALSE);
|
|
}
|
|
|
|
len = dtype_get_at_most_n_mbchars(prtype, mbminmaxlen, prefix_len, len,
|
|
(const char *)buf);
|
|
|
|
/* We are testing for equality; ASC/DESC does not matter. */
|
|
return (!cmp_data_data(mtype, prtype, true, buf, len, sec_field, sec_len));
|
|
}
|
|
|
|
/** Returns TRUE if the user-defined column values in a secondary index record
|
|
are alphabetically the same as the corresponding columns in the clustered
|
|
index record.
|
|
NOTE: the comparison is NOT done as a binary comparison, but character
|
|
fields are compared with collation!
|
|
@param[in] sec_rec secondary index record
|
|
@param[in] sec_index secondary index
|
|
@param[in] clust_rec clustered index record;
|
|
must be protected by a page s-latch
|
|
@param[in] clust_index clustered index
|
|
@param[in] thr query thread
|
|
@param[out] is_equal set to true if the secondary record is equal
|
|
to the corresponding fields in the clustered record, when compared with
|
|
collation; false if not equal or if the
|
|
clustered record has been marked for deletion; only valid if DB_SUCCESS was
|
|
returned
|
|
@return DB_SUCCESS or error code */
|
|
static dberr_t row_sel_sec_rec_is_for_clust_rec(
|
|
const rec_t *sec_rec, dict_index_t *sec_index, const rec_t *clust_rec,
|
|
dict_index_t *clust_index, que_thr_t *thr, bool &is_equal) {
|
|
const byte *sec_field;
|
|
ulint sec_len;
|
|
const byte *clust_field;
|
|
ulint n;
|
|
ulint i;
|
|
mem_heap_t *heap = NULL;
|
|
ulint clust_offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint sec_offsets_[REC_OFFS_SMALL_SIZE];
|
|
ulint *clust_offs = clust_offsets_;
|
|
ulint *sec_offs = sec_offsets_;
|
|
trx_t *trx = thr_get_trx(thr);
|
|
dberr_t err = DB_SUCCESS;
|
|
|
|
is_equal = true;
|
|
|
|
rec_offs_init(clust_offsets_);
|
|
rec_offs_init(sec_offsets_);
|
|
|
|
if (rec_get_deleted_flag(clust_rec, dict_table_is_comp(clust_index->table))) {
|
|
/* The clustered index record is delete-marked;
|
|
it is not visible in the read view. Besides,
|
|
if there are any externally stored columns,
|
|
some of them may have already been purged. */
|
|
is_equal = false;
|
|
return (DB_SUCCESS);
|
|
}
|
|
|
|
heap = mem_heap_create(256);
|
|
|
|
clust_offs = rec_get_offsets(clust_rec, clust_index, clust_offs,
|
|
ULINT_UNDEFINED, &heap);
|
|
sec_offs =
|
|
rec_get_offsets(sec_rec, sec_index, sec_offs, ULINT_UNDEFINED, &heap);
|
|
|
|
n = dict_index_get_n_ordering_defined_by_user(sec_index);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
const dict_field_t *ifield;
|
|
const dict_col_t *col;
|
|
ulint clust_pos = 0;
|
|
ulint clust_len;
|
|
ulint len;
|
|
row_ext_t *ext;
|
|
|
|
ifield = sec_index->get_field(i);
|
|
col = ifield->col;
|
|
|
|
/* For virtual column, its value will need to be
|
|
reconstructed from base column in cluster index */
|
|
if (col->is_virtual()) {
|
|
const dict_v_col_t *v_col;
|
|
const dtuple_t *row;
|
|
dfield_t *vfield;
|
|
|
|
v_col = reinterpret_cast<const dict_v_col_t *>(col);
|
|
|
|
row = row_build(ROW_COPY_POINTERS, clust_index, clust_rec, clust_offs,
|
|
NULL, NULL, NULL, &ext, heap);
|
|
|
|
vfield = innobase_get_computed_value(row, v_col, clust_index, &heap, heap,
|
|
NULL, thr_get_trx(thr)->mysql_thd,
|
|
thr->prebuilt->m_mysql_table, NULL,
|
|
NULL, NULL);
|
|
|
|
if (vfield == NULL) {
|
|
/* This may happen e.g. when this statement is executed in
|
|
* read-uncommited isolation and value (like json function)
|
|
* depends on an externally stored lob (like json) which
|
|
* was not written yet. */
|
|
err = DB_COMPUTE_VALUE_FAILED;
|
|
goto func_exit;
|
|
}
|
|
|
|
clust_len = vfield->len;
|
|
clust_field = static_cast<byte *>(vfield->data);
|
|
|
|
} else {
|
|
clust_pos = dict_col_get_clust_pos(col, clust_index);
|
|
|
|
clust_field = rec_get_nth_field_instant(clust_rec, clust_offs, clust_pos,
|
|
clust_index, &clust_len);
|
|
}
|
|
|
|
sec_field = rec_get_nth_field(sec_rec, sec_offs, i, &sec_len);
|
|
|
|
len = clust_len;
|
|
|
|
if (ifield->prefix_len > 0 && len != UNIV_SQL_NULL &&
|
|
sec_len != UNIV_SQL_NULL && !col->is_virtual()) {
|
|
if (rec_offs_nth_extern(clust_offs, clust_pos)) {
|
|
len -= BTR_EXTERN_FIELD_REF_SIZE;
|
|
}
|
|
|
|
len = dtype_get_at_most_n_mbchars(col->prtype, col->mbminmaxlen,
|
|
ifield->prefix_len, len,
|
|
(char *)clust_field);
|
|
|
|
/* Check sec index field matches that of cluster index
|
|
in the case of for table with ATOMIC BLOB, note
|
|
we also need to check if sec_len is 0 */
|
|
if (rec_offs_nth_extern(clust_offs, clust_pos) &&
|
|
(len < sec_len ||
|
|
(dict_table_has_atomic_blobs(sec_index->table) && sec_len == 0))) {
|
|
if (!row_sel_sec_rec_is_for_blob(
|
|
trx, col->mtype, col->prtype, col->mbminmaxlen, clust_field,
|
|
clust_len, sec_field, sec_len, ifield->prefix_len,
|
|
clust_index->table)) {
|
|
is_equal = false;
|
|
goto func_exit;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* For spatial index, the first field is MBR, we check
|
|
if the MBR is equal or not. */
|
|
if (dict_index_is_spatial(sec_index) && i == 0) {
|
|
rtr_mbr_t tmp_mbr;
|
|
rtr_mbr_t sec_mbr;
|
|
byte *dptr = const_cast<byte *>(clust_field);
|
|
|
|
ut_ad(clust_len != UNIV_SQL_NULL);
|
|
|
|
/* For externally stored field, we need to get full
|
|
geo data to generate the MBR for comparing. */
|
|
if (rec_offs_nth_extern(clust_offs, clust_pos)) {
|
|
dptr = lob::btr_copy_externally_stored_field(
|
|
trx, clust_index, &clust_len, nullptr, dptr,
|
|
dict_tf_get_page_size(sec_index->table->flags), len,
|
|
dict_index_is_sdi(sec_index), heap);
|
|
}
|
|
|
|
get_mbr_from_store(sec_index->rtr_srs.get(), dptr,
|
|
static_cast<uint>(clust_len), SPDIMS,
|
|
reinterpret_cast<double *>(&tmp_mbr), nullptr);
|
|
rtr_read_mbr(sec_field, &sec_mbr);
|
|
|
|
if (!mbr_equal_cmp(sec_index->rtr_srs.get(), &sec_mbr, &tmp_mbr)) {
|
|
is_equal = false;
|
|
goto func_exit;
|
|
}
|
|
} else if (col->is_multi_value()) {
|
|
if (!is_multi_value_clust_and_sec_equal(clust_field, clust_len, sec_field,
|
|
sec_len, col)) {
|
|
is_equal = false;
|
|
goto func_exit;
|
|
}
|
|
} else {
|
|
/* We are testing for equality; ASC/DESC does not
|
|
matter */
|
|
if (0 != cmp_data_data(col->mtype, col->prtype, true, clust_field, len,
|
|
sec_field, sec_len)) {
|
|
is_equal = false;
|
|
goto func_exit;
|
|
}
|
|
}
|
|
}
|
|
|
|
func_exit:
|
|
if (UNIV_LIKELY_NULL(heap)) {
|
|
mem_heap_free(heap);
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
/** Creates a select node struct.
|
|
@return own: select node struct */
|
|
sel_node_t *sel_node_create(
|
|
mem_heap_t *heap) /*!< in: memory heap where created */
|
|
{
|
|
sel_node_t *node;
|
|
|
|
node = static_cast<sel_node_t *>(mem_heap_alloc(heap, sizeof(sel_node_t)));
|
|
|
|
node->common.type = QUE_NODE_SELECT;
|
|
node->state = SEL_NODE_OPEN;
|
|
|
|
node->plans = NULL;
|
|
|
|
return (node);
|
|
}
|
|
|
|
/** Frees the memory private to a select node when a query graph is freed,
|
|
does not free the heap where the node was originally created. */
|
|
void sel_node_free_private(sel_node_t *node) /*!< in: select node struct */
|
|
{
|
|
ulint i;
|
|
plan_t *plan;
|
|
|
|
if (node->plans != NULL) {
|
|
for (i = 0; i < node->n_tables; i++) {
|
|
plan = sel_node_get_nth_plan(node, i);
|
|
|
|
btr_pcur_close(&(plan->pcur));
|
|
btr_pcur_close(&(plan->clust_pcur));
|
|
|
|
if (plan->old_vers_heap) {
|
|
mem_heap_free(plan->old_vers_heap);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Evaluates the values in a select list. If there are aggregate functions,
|
|
their argument value is added to the aggregate total. */
|
|
UNIV_INLINE
|
|
void sel_eval_select_list(sel_node_t *node) /*!< in: select node */
|
|
{
|
|
que_node_t *exp;
|
|
|
|
exp = node->select_list;
|
|
|
|
while (exp) {
|
|
eval_exp(exp);
|
|
|
|
exp = que_node_get_next(exp);
|
|
}
|
|
}
|
|
|
|
/** Assigns the values in the select list to the possible into-variables in
|
|
SELECT ... INTO ... */
|
|
UNIV_INLINE
|
|
void sel_assign_into_var_values(sym_node_t *var, /*!< in: first variable in a
|
|
list of variables */
|
|
sel_node_t *node) /*!< in: select node */
|
|
{
|
|
que_node_t *exp;
|
|
|
|
if (var == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (exp = node->select_list; var != 0;
|
|
var = static_cast<sym_node_t *>(que_node_get_next(var))) {
|
|
ut_ad(exp);
|
|
|
|
eval_node_copy_val(var->alias, exp);
|
|
|
|
exp = que_node_get_next(exp);
|
|
}
|
|
}
|
|
|
|
/** Resets the aggregate value totals in the select list of an aggregate type
|
|
query. */
|
|
UNIV_INLINE
|
|
void sel_reset_aggregate_vals(sel_node_t *node) /*!< in: select node */
|
|
{
|
|
func_node_t *func_node;
|
|
|
|
ut_ad(node->is_aggregate);
|
|
|
|
for (func_node = static_cast<func_node_t *>(node->select_list);
|
|
func_node != 0;
|
|
func_node = static_cast<func_node_t *>(que_node_get_next(func_node))) {
|
|
eval_node_set_int_val(func_node, 0);
|
|
}
|
|
|
|
node->aggregate_already_fetched = FALSE;
|
|
}
|
|
|
|
/** Copies the input variable values when an explicit cursor is opened. */
|
|
UNIV_INLINE
|
|
void row_sel_copy_input_variable_vals(sel_node_t *node) /*!< in: select node */
|
|
{
|
|
sym_node_t *var;
|
|
|
|
var = UT_LIST_GET_FIRST(node->copy_variables);
|
|
|
|
while (var) {
|
|
eval_node_copy_val(var, var->alias);
|
|
|
|
var->indirection = NULL;
|
|
|
|
var = UT_LIST_GET_NEXT(col_var_list, var);
|
|
}
|
|
}
|
|
|
|
/** Fetches the column values from a record. */
|
|
static void row_sel_fetch_columns(
|
|
trx_t *trx, /*!< in: the current transaction or nullptr */
|
|
dict_index_t *index, /*!< in: record index */
|
|
const rec_t *rec, /*!< in: record in a clustered or non-clustered
|
|
index; must be protected by a page latch */
|
|
const ulint *offsets, /*!< in: rec_get_offsets(rec, index) */
|
|
sym_node_t *column) /*!< in: first column in a column list, or
|
|
NULL */
|
|
{
|
|
dfield_t *val;
|
|
ulint index_type;
|
|
ulint field_no;
|
|
const byte *data;
|
|
ulint len;
|
|
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
|
|
if (index->is_clustered()) {
|
|
index_type = SYM_CLUST_FIELD_NO;
|
|
} else {
|
|
index_type = SYM_SEC_FIELD_NO;
|
|
}
|
|
|
|
while (column) {
|
|
mem_heap_t *heap = NULL;
|
|
ibool needs_copy;
|
|
|
|
field_no = column->field_nos[index_type];
|
|
|
|
if (field_no != ULINT_UNDEFINED) {
|
|
if (UNIV_UNLIKELY(rec_offs_nth_extern(offsets, field_no))) {
|
|
/* Copy an externally stored field to the
|
|
temporary heap, if possible. */
|
|
|
|
heap = mem_heap_create(1);
|
|
|
|
data = lob::btr_rec_copy_externally_stored_field(
|
|
trx, index, rec, offsets, dict_table_page_size(index->table),
|
|
field_no, &len, nullptr, dict_index_is_sdi(index), heap);
|
|
|
|
/* data == NULL means that the
|
|
externally stored field was not
|
|
written yet. This record
|
|
should only be seen by
|
|
trx_rollback_or_clean_all_recovered() or any
|
|
TRX_ISO_READ_UNCOMMITTED
|
|
transactions. The InnoDB SQL parser
|
|
(the sole caller of this function)
|
|
does not implement READ UNCOMMITTED,
|
|
and it is not involved during rollback. */
|
|
ut_a(data);
|
|
ut_a(len != UNIV_SQL_NULL);
|
|
|
|
needs_copy = TRUE;
|
|
} else {
|
|
data = rec_get_nth_field_instant(rec, offsets, field_no, index, &len);
|
|
|
|
needs_copy = column->copy_val;
|
|
}
|
|
|
|
if (needs_copy) {
|
|
eval_node_copy_and_alloc_val(column, data, len);
|
|
} else {
|
|
val = que_node_get_val(column);
|
|
dfield_set_data(val, data, len);
|
|
}
|
|
|
|
if (UNIV_LIKELY_NULL(heap)) {
|
|
mem_heap_free(heap);
|
|
}
|
|
}
|
|
|
|
column = UT_LIST_GET_NEXT(col_var_list, column);
|
|
}
|
|
}
|
|
|
|
/** Allocates a prefetch buffer for a column when prefetch is first time done.
|
|
*/
|
|
static void sel_col_prefetch_buf_alloc(
|
|
sym_node_t *column) /*!< in: symbol table node for a column */
|
|
{
|
|
sel_buf_t *sel_buf;
|
|
ulint i;
|
|
|
|
ut_ad(que_node_get_type(column) == QUE_NODE_SYMBOL);
|
|
|
|
column->prefetch_buf = static_cast<sel_buf_t *>(
|
|
ut_malloc_nokey(SEL_MAX_N_PREFETCH * sizeof(sel_buf_t)));
|
|
|
|
for (i = 0; i < SEL_MAX_N_PREFETCH; i++) {
|
|
sel_buf = column->prefetch_buf + i;
|
|
|
|
sel_buf->data = NULL;
|
|
sel_buf->len = 0;
|
|
sel_buf->val_buf_size = 0;
|
|
}
|
|
}
|
|
|
|
/** Frees a prefetch buffer for a column, including the dynamically allocated
|
|
memory for data stored there. */
|
|
void sel_col_prefetch_buf_free(
|
|
sel_buf_t *prefetch_buf) /*!< in, own: prefetch buffer */
|
|
{
|
|
sel_buf_t *sel_buf;
|
|
ulint i;
|
|
|
|
for (i = 0; i < SEL_MAX_N_PREFETCH; i++) {
|
|
sel_buf = prefetch_buf + i;
|
|
|
|
if (sel_buf->val_buf_size > 0) {
|
|
ut_free(sel_buf->data);
|
|
}
|
|
}
|
|
|
|
ut_free(prefetch_buf);
|
|
}
|
|
|
|
/** Pops the column values for a prefetched, cached row from the column prefetch
|
|
buffers and places them to the val fields in the column nodes. */
|
|
static void sel_dequeue_prefetched_row(
|
|
plan_t *plan) /*!< in: plan node for a table */
|
|
{
|
|
sym_node_t *column;
|
|
sel_buf_t *sel_buf;
|
|
dfield_t *val;
|
|
byte *data;
|
|
ulint len;
|
|
ulint val_buf_size;
|
|
|
|
ut_ad(plan->n_rows_prefetched > 0);
|
|
|
|
column = UT_LIST_GET_FIRST(plan->columns);
|
|
|
|
while (column) {
|
|
val = que_node_get_val(column);
|
|
|
|
if (!column->copy_val) {
|
|
/* We did not really push any value for the
|
|
column */
|
|
|
|
ut_ad(!column->prefetch_buf);
|
|
ut_ad(que_node_get_val_buf_size(column) == 0);
|
|
ut_d(dfield_set_null(val));
|
|
|
|
goto next_col;
|
|
}
|
|
|
|
ut_ad(column->prefetch_buf);
|
|
ut_ad(!dfield_is_ext(val));
|
|
|
|
sel_buf = column->prefetch_buf + plan->first_prefetched;
|
|
|
|
data = sel_buf->data;
|
|
len = sel_buf->len;
|
|
val_buf_size = sel_buf->val_buf_size;
|
|
|
|
/* We must keep track of the allocated memory for
|
|
column values to be able to free it later: therefore
|
|
we swap the values for sel_buf and val */
|
|
|
|
sel_buf->data = static_cast<byte *>(dfield_get_data(val));
|
|
sel_buf->len = dfield_get_len(val);
|
|
sel_buf->val_buf_size = que_node_get_val_buf_size(column);
|
|
|
|
dfield_set_data(val, data, len);
|
|
que_node_set_val_buf_size(column, val_buf_size);
|
|
next_col:
|
|
column = UT_LIST_GET_NEXT(col_var_list, column);
|
|
}
|
|
|
|
plan->n_rows_prefetched--;
|
|
|
|
plan->first_prefetched++;
|
|
}
|
|
|
|
/** Pushes the column values for a prefetched, cached row to the column prefetch
|
|
buffers from the val fields in the column nodes. */
|
|
UNIV_INLINE
|
|
void sel_enqueue_prefetched_row(plan_t *plan) /*!< in: plan node for a table */
|
|
{
|
|
sym_node_t *column;
|
|
sel_buf_t *sel_buf;
|
|
dfield_t *val;
|
|
byte *data;
|
|
ulint len;
|
|
ulint pos;
|
|
ulint val_buf_size;
|
|
|
|
if (plan->n_rows_prefetched == 0) {
|
|
pos = 0;
|
|
plan->first_prefetched = 0;
|
|
} else {
|
|
pos = plan->n_rows_prefetched;
|
|
|
|
/* We have the convention that pushing new rows starts only
|
|
after the prefetch stack has been emptied: */
|
|
|
|
ut_ad(plan->first_prefetched == 0);
|
|
}
|
|
|
|
plan->n_rows_prefetched++;
|
|
|
|
ut_ad(pos < SEL_MAX_N_PREFETCH);
|
|
|
|
for (column = UT_LIST_GET_FIRST(plan->columns); column != 0;
|
|
column = UT_LIST_GET_NEXT(col_var_list, column)) {
|
|
if (!column->copy_val) {
|
|
/* There is no sense to push pointers to database
|
|
page fields when we do not keep latch on the page! */
|
|
continue;
|
|
}
|
|
|
|
if (!column->prefetch_buf) {
|
|
/* Allocate a new prefetch buffer */
|
|
|
|
sel_col_prefetch_buf_alloc(column);
|
|
}
|
|
|
|
sel_buf = column->prefetch_buf + pos;
|
|
|
|
val = que_node_get_val(column);
|
|
|
|
data = static_cast<byte *>(dfield_get_data(val));
|
|
len = dfield_get_len(val);
|
|
val_buf_size = que_node_get_val_buf_size(column);
|
|
|
|
/* We must keep track of the allocated memory for
|
|
column values to be able to free it later: therefore
|
|
we swap the values for sel_buf and val */
|
|
|
|
dfield_set_data(val, sel_buf->data, sel_buf->len);
|
|
que_node_set_val_buf_size(column, sel_buf->val_buf_size);
|
|
|
|
sel_buf->data = data;
|
|
sel_buf->len = len;
|
|
sel_buf->val_buf_size = val_buf_size;
|
|
}
|
|
}
|
|
|
|
/** Builds a previous version of a clustered index record for a consistent read
|
|
@return DB_SUCCESS or error code */
|
|
static MY_ATTRIBUTE((warn_unused_result)) dberr_t row_sel_build_prev_vers(
|
|
lizard::Vision *vision, /*!< in: read view */
|
|
dict_index_t *index, /*!< in: plan node for table */
|
|
rec_t *rec, /*!< in: record in a clustered index */
|
|
ulint **offsets, /*!< in/out: offsets returned by
|
|
rec_get_offsets(rec, plan->index) */
|
|
mem_heap_t **offset_heap, /*!< in/out: memory heap from which
|
|
the offsets are allocated */
|
|
mem_heap_t **old_vers_heap, /*!< out: old version heap to use */
|
|
rec_t **old_vers, /*!< out: old version, or NULL if the
|
|
record does not exist in the view:
|
|
i.e., it was freshly inserted
|
|
afterwards */
|
|
mtr_t *mtr) /*!< in: mtr */
|
|
{
|
|
dberr_t err;
|
|
|
|
if (*old_vers_heap) {
|
|
mem_heap_empty(*old_vers_heap);
|
|
} else {
|
|
*old_vers_heap = mem_heap_create(512);
|
|
}
|
|
|
|
err = row_vers_build_for_consistent_read(rec, mtr, index, offsets, vision,
|
|
offset_heap, *old_vers_heap,
|
|
old_vers, NULL, nullptr);
|
|
return (err);
|
|
}
|
|
|
|
/** Builds the last committed version of a clustered index record for a
|
|
semi-consistent read. */
|
|
static void row_sel_build_committed_vers_for_mysql(
|
|
dict_index_t *clust_index, /*!< in: clustered index */
|
|
row_prebuilt_t *prebuilt, /*!< in: prebuilt struct */
|
|
const rec_t *rec, /*!< in: record in a clustered index */
|
|
ulint **offsets, /*!< in/out: offsets returned by
|
|
rec_get_offsets(rec, clust_index) */
|
|
mem_heap_t **offset_heap, /*!< in/out: memory heap from which
|
|
the offsets are allocated */
|
|
const rec_t **old_vers, /*!< out: old version, or NULL if the
|
|
record does not exist in the view:
|
|
i.e., it was freshly inserted
|
|
afterwards */
|
|
const dtuple_t **vrow, /*!< out: to be filled with old virtual
|
|
column version if any */
|
|
mtr_t *mtr) /*!< in: mtr */
|
|
{
|
|
if (prebuilt->old_vers_heap) {
|
|
mem_heap_empty(prebuilt->old_vers_heap);
|
|
} else {
|
|
prebuilt->old_vers_heap = mem_heap_create(rec_offs_size(*offsets));
|
|
}
|
|
|
|
row_vers_build_for_semi_consistent_read(rec, mtr, clust_index, offsets,
|
|
offset_heap, prebuilt->old_vers_heap,
|
|
old_vers, vrow);
|
|
}
|
|
|
|
/** Tests the conditions which determine when the index segment we are searching
|
|
through has been exhausted.
|
|
@return true if row passed the tests */
|
|
UNIV_INLINE
|
|
ibool row_sel_test_end_conds(
|
|
plan_t *plan) /*!< in: plan for the table; the column values must
|
|
already have been retrieved and the right sides of
|
|
comparisons evaluated */
|
|
{
|
|
func_node_t *cond;
|
|
|
|
/* All conditions in end_conds are comparisons of a column to an
|
|
expression */
|
|
|
|
for (cond = UT_LIST_GET_FIRST(plan->end_conds); cond != 0;
|
|
cond = UT_LIST_GET_NEXT(cond_list, cond)) {
|
|
/* Evaluate the left side of the comparison, i.e., get the
|
|
column value if there is an indirection */
|
|
|
|
eval_sym(static_cast<sym_node_t *>(cond->args));
|
|
|
|
/* Do the comparison */
|
|
|
|
if (!eval_cmp(cond)) {
|
|
return (FALSE);
|
|
}
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
/** Tests the other conditions.
|
|
@return true if row passed the tests */
|
|
UNIV_INLINE
|
|
ibool row_sel_test_other_conds(
|
|
plan_t *plan) /*!< in: plan for the table; the column values must
|
|
already have been retrieved */
|
|
{
|
|
func_node_t *cond;
|
|
|
|
cond = UT_LIST_GET_FIRST(plan->other_conds);
|
|
|
|
while (cond) {
|
|
eval_exp(cond);
|
|
|
|
if (!eval_node_get_ibool_val(cond)) {
|
|
return (FALSE);
|
|
}
|
|
|
|
cond = UT_LIST_GET_NEXT(cond_list, cond);
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
/** Retrieves the clustered index record corresponding to a record in a
|
|
non-clustered index. Does the necessary locking.
|
|
@return DB_SUCCESS or error code */
|
|
static MY_ATTRIBUTE((warn_unused_result)) dberr_t row_sel_get_clust_rec(
|
|
sel_node_t *node, /*!< in: select_node */
|
|
plan_t *plan, /*!< in: plan node for table */
|
|
rec_t *rec, /*!< in: record in a non-clustered index */
|
|
que_thr_t *thr, /*!< in: query thread */
|
|
rec_t **out_rec, /*!< out: clustered record or an old version of
|
|
it, NULL if the old version did not exist
|
|
in the read view, i.e., it was a fresh
|
|
inserted version */
|
|
mtr_t *mtr) /*!< in: mtr used to get access to the
|
|
non-clustered record; the same mtr is used to
|
|
access the clustered index */
|
|
{
|
|
dict_index_t *index;
|
|
rec_t *clust_rec;
|
|
rec_t *old_vers;
|
|
dberr_t err;
|
|
mem_heap_t *heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint *offsets = offsets_;
|
|
rec_offs_init(offsets_);
|
|
|
|
*out_rec = NULL;
|
|
|
|
offsets = rec_get_offsets(rec, btr_pcur_get_btr_cur(&plan->pcur)->index,
|
|
offsets, ULINT_UNDEFINED, &heap);
|
|
|
|
row_build_row_ref_fast(plan->clust_ref, plan->clust_map, rec, offsets);
|
|
|
|
index = plan->table->first_index();
|
|
|
|
btr_pcur_open_with_no_init(index, plan->clust_ref, PAGE_CUR_LE,
|
|
BTR_SEARCH_LEAF, &plan->clust_pcur, 0, mtr);
|
|
|
|
clust_rec = btr_pcur_get_rec(&(plan->clust_pcur));
|
|
|
|
/* Note: only if the search ends up on a non-infimum record is the
|
|
low_match value the real match to the search tuple */
|
|
|
|
if (!page_rec_is_user_rec(clust_rec) ||
|
|
btr_pcur_get_low_match(&(plan->clust_pcur)) <
|
|
dict_index_get_n_unique(index)) {
|
|
ut_a(rec_get_deleted_flag(rec, dict_table_is_comp(plan->table)));
|
|
ut_a(node->vision);
|
|
|
|
/* In a rare case it is possible that no clust rec is found
|
|
for a delete-marked secondary index record: if in row0umod.cc
|
|
in row_undo_mod_remove_clust_low() we have already removed
|
|
the clust rec, while purge is still cleaning and removing
|
|
secondary index records associated with earlier versions of
|
|
the clustered index record. In that case we know that the
|
|
clustered index record did not exist in the read view of
|
|
trx. */
|
|
|
|
goto func_exit;
|
|
}
|
|
|
|
offsets = rec_get_offsets(clust_rec, index, offsets, ULINT_UNDEFINED, &heap);
|
|
|
|
if (!node->vision) {
|
|
/* Try to place a lock on the index record */
|
|
|
|
ulint lock_type;
|
|
trx_t *trx;
|
|
|
|
trx = thr_get_trx(thr);
|
|
|
|
lock_type = trx->skip_gap_locks() ? LOCK_REC_NOT_GAP : LOCK_ORDINARY;
|
|
|
|
err = lock_clust_rec_read_check_and_lock(
|
|
lock_duration_t::REGULAR, btr_pcur_get_block(&plan->clust_pcur),
|
|
clust_rec, index, offsets, SELECT_ORDINARY,
|
|
static_cast<lock_mode>(node->row_lock_mode), lock_type, thr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS:
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
/* Declare the variable uninitialized in Valgrind.
|
|
It should be set to DB_SUCCESS at func_exit. */
|
|
UNIV_MEM_INVALID(&err, sizeof err);
|
|
break;
|
|
default:
|
|
goto err_exit;
|
|
}
|
|
} else {
|
|
/* This is a non-locking consistent read: if necessary, fetch
|
|
a previous version of the record */
|
|
|
|
old_vers = NULL;
|
|
|
|
if (!lock_clust_rec_cons_read_sees(clust_rec, index, offsets,
|
|
/** TODO: Add cleanout logic */
|
|
nullptr, node->vision)) {
|
|
err =
|
|
row_sel_build_prev_vers(node->vision, index, clust_rec, &offsets,
|
|
&heap, &plan->old_vers_heap, &old_vers, mtr);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
goto err_exit;
|
|
}
|
|
|
|
clust_rec = old_vers;
|
|
|
|
if (clust_rec == NULL) {
|
|
goto func_exit;
|
|
}
|
|
}
|
|
|
|
/* If we had to go to an earlier version of row or the
|
|
secondary index record is delete marked, then it may be that
|
|
the secondary index record corresponding to clust_rec
|
|
(or old_vers) is not rec; in that case we must ignore
|
|
such row because in our snapshot rec would not have existed.
|
|
Remember that from rec we cannot see directly which transaction
|
|
id corresponds to it: we have to go to the clustered index
|
|
record. A query where we want to fetch all rows where
|
|
the secondary index value is in some interval would return
|
|
a wrong result if we would not drop rows which we come to
|
|
visit through secondary index records that would not really
|
|
exist in our snapshot. */
|
|
|
|
if (old_vers ||
|
|
rec_get_deleted_flag(rec, dict_table_is_comp(plan->table))) {
|
|
bool rec_equal;
|
|
|
|
err = row_sel_sec_rec_is_for_clust_rec(rec, plan->index, clust_rec, index,
|
|
thr, rec_equal);
|
|
if (err != DB_SUCCESS) {
|
|
goto err_exit;
|
|
} else if (!rec_equal) {
|
|
goto func_exit;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Fetch the columns needed in test conditions. The clustered
|
|
index record is protected by a page latch that was acquired
|
|
when plan->clust_pcur was positioned. The latch will not be
|
|
released until mtr_commit(mtr). */
|
|
|
|
ut_ad(!rec_get_deleted_flag(clust_rec, rec_offs_comp(offsets)));
|
|
row_sel_fetch_columns(thr_get_trx(thr), index, clust_rec, offsets,
|
|
UT_LIST_GET_FIRST(plan->columns));
|
|
*out_rec = clust_rec;
|
|
func_exit:
|
|
err = DB_SUCCESS;
|
|
err_exit:
|
|
if (UNIV_LIKELY_NULL(heap)) {
|
|
mem_heap_free(heap);
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
/** Sets a lock on a page of R-Tree record. This is all or none action,
|
|
mostly due to we cannot reposition a record in R-Tree (with the
|
|
nature of splitting)
|
|
@param[in] pcur cursor
|
|
@param[in] first_rec record
|
|
@param[in] index index
|
|
@param[in] offsets rec_get_offsets(rec, index)
|
|
@param[in] sel_mode select mode: SELECT_ORDINARY,
|
|
SELECT_SKIP_LOKCED, or SELECT_NO_WAIT
|
|
@param[in] mode lock mode
|
|
@param[in] type LOCK_ORDINARY, LOCK_GAP, or LOC_REC_NOT_GAP
|
|
@param[in] thr query thread
|
|
@param[in] mtr mtr
|
|
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */
|
|
UNIV_INLINE
|
|
dberr_t sel_set_rtr_rec_lock(btr_pcur_t *pcur, const rec_t *first_rec,
|
|
dict_index_t *index, const ulint *offsets,
|
|
select_mode sel_mode, ulint mode, ulint type,
|
|
que_thr_t *thr, mtr_t *mtr) {
|
|
matched_rec_t *match = pcur->m_btr_cur.rtr_info->matches;
|
|
mem_heap_t *heap = NULL;
|
|
dberr_t err = DB_SUCCESS;
|
|
trx_t *trx = thr_get_trx(thr);
|
|
buf_block_t *cur_block = btr_pcur_get_block(pcur);
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint *my_offsets = const_cast<ulint *>(offsets);
|
|
rec_t *rec = const_cast<rec_t *>(first_rec);
|
|
rtr_rec_vector *match_rec;
|
|
rtr_rec_vector::iterator end;
|
|
|
|
rec_offs_init(offsets_);
|
|
|
|
if (match->locked || page_rec_is_supremum(first_rec)) {
|
|
return (DB_SUCCESS_LOCKED_REC);
|
|
}
|
|
|
|
ut_ad(page_align(first_rec) == cur_block->frame);
|
|
ut_ad(match->valid);
|
|
|
|
rw_lock_x_lock(&(match->block.lock));
|
|
retry:
|
|
cur_block = btr_pcur_get_block(pcur);
|
|
ut_ad(rw_lock_own(&(match->block.lock), RW_LOCK_X) ||
|
|
rw_lock_own(&(match->block.lock), RW_LOCK_S));
|
|
ut_ad(page_is_leaf(buf_block_get_frame(cur_block)));
|
|
|
|
err = lock_sec_rec_read_check_and_lock(
|
|
lock_duration_t::REGULAR, cur_block, rec, index, my_offsets, sel_mode,
|
|
static_cast<lock_mode>(mode), type, thr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS:
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
case DB_SKIP_LOCKED:
|
|
goto lock_match;
|
|
|
|
case DB_LOCK_WAIT:
|
|
re_scan:
|
|
mtr_commit(mtr);
|
|
trx->error_state = err;
|
|
que_thr_stop_for_mysql(thr);
|
|
thr->lock_state = QUE_THR_LOCK_ROW;
|
|
if (row_mysql_handle_errors(&err, trx, thr, NULL)) {
|
|
thr->lock_state = QUE_THR_LOCK_NOLOCK;
|
|
mtr_start(mtr);
|
|
|
|
mutex_enter(&match->rtr_match_mutex);
|
|
if (!match->valid && match->matched_recs->empty()) {
|
|
mutex_exit(&match->rtr_match_mutex);
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto func_end;
|
|
}
|
|
mutex_exit(&match->rtr_match_mutex);
|
|
|
|
page_no_t page_no = page_get_page_no(btr_pcur_get_page(pcur));
|
|
page_id_t page_id(dict_index_get_space(index), page_no);
|
|
|
|
cur_block = buf_page_get_gen(
|
|
page_id, dict_table_page_size(index->table), RW_X_LATCH, NULL,
|
|
Page_fetch::NORMAL, __FILE__, __LINE__, mtr);
|
|
} else {
|
|
mtr_start(mtr);
|
|
goto func_end;
|
|
}
|
|
|
|
DEBUG_SYNC_C("rtr_set_lock_wait");
|
|
|
|
if (!match->valid) {
|
|
/* Page got deleted */
|
|
mtr_commit(mtr);
|
|
mtr_start(mtr);
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto func_end;
|
|
}
|
|
|
|
match->matched_recs->clear();
|
|
|
|
rtr_cur_search_with_match(
|
|
cur_block, index, pcur->m_btr_cur.rtr_info->search_tuple,
|
|
pcur->m_btr_cur.rtr_info->search_mode, &pcur->m_btr_cur.page_cur,
|
|
pcur->m_btr_cur.rtr_info);
|
|
|
|
if (!page_is_leaf(buf_block_get_frame(cur_block))) {
|
|
/* Page got splitted and promoted (only for
|
|
root page it is possible). Release the
|
|
page and ask for a re-search */
|
|
mtr_commit(mtr);
|
|
mtr_start(mtr);
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto func_end;
|
|
}
|
|
|
|
rec = btr_pcur_get_rec(pcur);
|
|
my_offsets = offsets_;
|
|
my_offsets =
|
|
rec_get_offsets(rec, index, my_offsets, ULINT_UNDEFINED, &heap);
|
|
|
|
/* No match record */
|
|
if (page_rec_is_supremum(rec) || !match->valid) {
|
|
mtr_commit(mtr);
|
|
mtr_start(mtr);
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto func_end;
|
|
}
|
|
|
|
goto retry;
|
|
|
|
default:
|
|
goto func_end;
|
|
}
|
|
|
|
lock_match:
|
|
my_offsets = offsets_;
|
|
match_rec = match->matched_recs;
|
|
end = match_rec->end();
|
|
|
|
for (rtr_rec_vector::iterator it = match_rec->begin(); it != end; ++it) {
|
|
rtr_rec_t *rtr_rec = &(*it);
|
|
|
|
my_offsets = rec_get_offsets(rtr_rec->r_rec, index, my_offsets,
|
|
ULINT_UNDEFINED, &heap);
|
|
|
|
err = lock_sec_rec_read_check_and_lock(
|
|
lock_duration_t::REGULAR, &match->block, rtr_rec->r_rec, index,
|
|
my_offsets, sel_mode, static_cast<lock_mode>(mode), type, thr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS:
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
rtr_rec->locked = true;
|
|
break;
|
|
|
|
case DB_LOCK_WAIT:
|
|
goto re_scan;
|
|
|
|
case DB_SKIP_LOCKED:
|
|
break;
|
|
|
|
default:
|
|
goto func_end;
|
|
}
|
|
}
|
|
|
|
match->locked = true;
|
|
|
|
func_end:
|
|
rw_lock_x_unlock(&(match->block.lock));
|
|
if (heap != NULL) {
|
|
mem_heap_free(heap);
|
|
}
|
|
|
|
ut_ad(err != DB_LOCK_WAIT);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/** Sets a lock on a record.
|
|
mostly due to we cannot reposition a record in R-Tree (with the
|
|
nature of splitting)
|
|
@param[in] pcur cursor
|
|
@param[in] rec record
|
|
@param[in] index index
|
|
@param[in] offsets rec_get_offsets(rec, index)
|
|
@param[in] sel_mode select mode: SELECT_ORDINARY,
|
|
SELECT_SKIP_LOKCED, or SELECT_NO_WAIT
|
|
@param[in] mode lock mode
|
|
@param[in] type LOCK_ORDINARY, LOCK_GAP, or LOC_REC_NOT_GAP
|
|
@param[in] thr query thread
|
|
@param[in] mtr mtr
|
|
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */
|
|
UNIV_INLINE
|
|
dberr_t sel_set_rec_lock(btr_pcur_t *pcur, const rec_t *rec,
|
|
dict_index_t *index, const ulint *offsets,
|
|
select_mode sel_mode, ulint mode, ulint type,
|
|
que_thr_t *thr, mtr_t *mtr) {
|
|
trx_t *trx;
|
|
dberr_t err = DB_SUCCESS;
|
|
const buf_block_t *block;
|
|
|
|
block = btr_pcur_get_block(pcur);
|
|
|
|
trx = thr_get_trx(thr);
|
|
trx_mutex_enter(trx);
|
|
bool too_many_locks = (UT_LIST_GET_LEN(trx->lock.trx_locks) > 10000);
|
|
trx_mutex_exit(trx);
|
|
|
|
if (too_many_locks) {
|
|
if (buf_LRU_buf_pool_running_out()) {
|
|
return (DB_LOCK_TABLE_FULL);
|
|
}
|
|
}
|
|
|
|
if (index->is_clustered()) {
|
|
err = lock_clust_rec_read_check_and_lock(
|
|
lock_duration_t::REGULAR, block, rec, index, offsets, sel_mode,
|
|
static_cast<lock_mode>(mode), type, thr);
|
|
} else {
|
|
if (dict_index_is_spatial(index)) {
|
|
if (type == LOCK_GAP || type == LOCK_ORDINARY) {
|
|
ut_ad(0);
|
|
ib::error(ER_IB_MSG_1026) << "Incorrectly request GAP lock "
|
|
"on RTree";
|
|
return (DB_SUCCESS);
|
|
}
|
|
err = sel_set_rtr_rec_lock(pcur, rec, index, offsets, sel_mode, mode,
|
|
type, thr, mtr);
|
|
} else {
|
|
err = lock_sec_rec_read_check_and_lock(
|
|
lock_duration_t::REGULAR, block, rec, index, offsets, sel_mode,
|
|
static_cast<lock_mode>(mode), type, thr);
|
|
}
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
/** Opens a pcur to a table index. */
|
|
static void row_sel_open_pcur(plan_t *plan, /*!< in: table plan */
|
|
ibool search_latch_locked,
|
|
/*!< in: TRUE if the thread currently
|
|
has the search latch locked in
|
|
s-mode */
|
|
mtr_t *mtr) /*!< in: mtr */
|
|
{
|
|
dict_index_t *index;
|
|
func_node_t *cond;
|
|
que_node_t *exp;
|
|
ulint n_fields;
|
|
ulint has_search_latch = 0; /* RW_S_LATCH or 0 */
|
|
ulint i;
|
|
|
|
if (search_latch_locked) {
|
|
has_search_latch = RW_S_LATCH;
|
|
}
|
|
|
|
index = plan->index;
|
|
|
|
/* Calculate the value of the search tuple: the exact match columns
|
|
get their expressions evaluated when we evaluate the right sides of
|
|
end_conds */
|
|
|
|
cond = UT_LIST_GET_FIRST(plan->end_conds);
|
|
|
|
while (cond) {
|
|
eval_exp(que_node_get_next(cond->args));
|
|
|
|
cond = UT_LIST_GET_NEXT(cond_list, cond);
|
|
}
|
|
|
|
if (plan->tuple) {
|
|
n_fields = dtuple_get_n_fields(plan->tuple);
|
|
|
|
if (plan->n_exact_match < n_fields) {
|
|
/* There is a non-exact match field which must be
|
|
evaluated separately */
|
|
|
|
eval_exp(plan->tuple_exps[n_fields - 1]);
|
|
}
|
|
|
|
for (i = 0; i < n_fields; i++) {
|
|
exp = plan->tuple_exps[i];
|
|
|
|
dfield_copy_data(dtuple_get_nth_field(plan->tuple, i),
|
|
que_node_get_val(exp));
|
|
}
|
|
|
|
/* Open pcur to the index */
|
|
|
|
btr_pcur_open_with_no_init(index, plan->tuple, plan->mode, BTR_SEARCH_LEAF,
|
|
&plan->pcur, has_search_latch, mtr);
|
|
} else {
|
|
/* Open the cursor to the start or the end of the index
|
|
(FALSE: no init) */
|
|
|
|
btr_pcur_open_at_index_side(plan->asc, index, BTR_SEARCH_LEAF,
|
|
&(plan->pcur), false, 0, mtr);
|
|
}
|
|
|
|
ut_ad(plan->n_rows_prefetched == 0);
|
|
ut_ad(plan->n_rows_fetched == 0);
|
|
ut_ad(plan->cursor_at_end == FALSE);
|
|
|
|
plan->pcur_is_open = TRUE;
|
|
}
|
|
|
|
/** Restores a stored pcur position to a table index.
|
|
@return true if the cursor should be moved to the next record after we
|
|
return from this function (moved to the previous, in the case of a
|
|
descending cursor) without processing again the current cursor
|
|
record */
|
|
static ibool row_sel_restore_pcur_pos(plan_t *plan, /*!< in: table plan */
|
|
mtr_t *mtr) /*!< in: mtr */
|
|
{
|
|
ibool equal_position;
|
|
ulint relative_position;
|
|
|
|
ut_ad(!plan->cursor_at_end);
|
|
|
|
relative_position = btr_pcur_get_rel_pos(&(plan->pcur));
|
|
|
|
equal_position =
|
|
btr_pcur_restore_position(BTR_SEARCH_LEAF, &(plan->pcur), mtr);
|
|
|
|
/* If the cursor is traveling upwards, and relative_position is
|
|
|
|
(1) BTR_PCUR_BEFORE: this is not allowed, as we did not have a lock
|
|
yet on the successor of the page infimum;
|
|
(2) BTR_PCUR_AFTER: btr_pcur_restore_position placed the cursor on the
|
|
first record GREATER than the predecessor of a page supremum; we have
|
|
not yet processed the cursor record: no need to move the cursor to the
|
|
next record;
|
|
(3) BTR_PCUR_ON: btr_pcur_restore_position placed the cursor on the
|
|
last record LESS or EQUAL to the old stored user record; (a) if
|
|
equal_position is FALSE, this means that the cursor is now on a record
|
|
less than the old user record, and we must move to the next record;
|
|
(b) if equal_position is TRUE, then if
|
|
plan->stored_cursor_rec_processed is TRUE, we must move to the next
|
|
record, else there is no need to move the cursor. */
|
|
|
|
if (plan->asc) {
|
|
if (relative_position == BTR_PCUR_ON) {
|
|
if (equal_position) {
|
|
return (plan->stored_cursor_rec_processed);
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
ut_ad(relative_position == BTR_PCUR_AFTER ||
|
|
relative_position == BTR_PCUR_AFTER_LAST_IN_TREE);
|
|
|
|
return (FALSE);
|
|
}
|
|
|
|
/* If the cursor is traveling downwards, and relative_position is
|
|
|
|
(1) BTR_PCUR_BEFORE: btr_pcur_restore_position placed the cursor on
|
|
the last record LESS than the successor of a page infimum; we have not
|
|
processed the cursor record: no need to move the cursor;
|
|
(2) BTR_PCUR_AFTER: btr_pcur_restore_position placed the cursor on the
|
|
first record GREATER than the predecessor of a page supremum; we have
|
|
processed the cursor record: we should move the cursor to the previous
|
|
record;
|
|
(3) BTR_PCUR_ON: btr_pcur_restore_position placed the cursor on the
|
|
last record LESS or EQUAL to the old stored user record; (a) if
|
|
equal_position is FALSE, this means that the cursor is now on a record
|
|
less than the old user record, and we need not move to the previous
|
|
record; (b) if equal_position is TRUE, then if
|
|
plan->stored_cursor_rec_processed is TRUE, we must move to the previous
|
|
record, else there is no need to move the cursor. */
|
|
|
|
if (relative_position == BTR_PCUR_BEFORE ||
|
|
relative_position == BTR_PCUR_BEFORE_FIRST_IN_TREE) {
|
|
return (FALSE);
|
|
}
|
|
|
|
if (relative_position == BTR_PCUR_ON) {
|
|
if (equal_position) {
|
|
return (plan->stored_cursor_rec_processed);
|
|
}
|
|
|
|
return (FALSE);
|
|
}
|
|
|
|
ut_ad(relative_position == BTR_PCUR_AFTER ||
|
|
relative_position == BTR_PCUR_AFTER_LAST_IN_TREE);
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
/** Resets a plan cursor to a closed state. */
|
|
UNIV_INLINE
|
|
void plan_reset_cursor(plan_t *plan) /*!< in: plan */
|
|
{
|
|
plan->pcur_is_open = FALSE;
|
|
plan->cursor_at_end = FALSE;
|
|
plan->n_rows_fetched = 0;
|
|
plan->n_rows_prefetched = 0;
|
|
}
|
|
|
|
/** Tries to do a shortcut to fetch a clustered index record with a unique key,
|
|
using the hash index if possible (not always).
|
|
@return SEL_FOUND, SEL_EXHAUSTED, SEL_RETRY */
|
|
static ulint row_sel_try_search_shortcut(
|
|
trx_t *trx, /*!< in: trx doing the operation. */
|
|
sel_node_t *node, /*!< in: select node for a consistent read */
|
|
plan_t *plan, /*!< in: plan for a unique search in clustered
|
|
index */
|
|
ibool search_latch_locked,
|
|
/*!< in: whether the search holds latch on
|
|
search system. */
|
|
mtr_t *mtr) /*!< in: mtr */
|
|
{
|
|
dict_index_t *index;
|
|
rec_t *rec;
|
|
mem_heap_t *heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint *offsets = offsets_;
|
|
ulint ret;
|
|
rec_offs_init(offsets_);
|
|
|
|
index = plan->index;
|
|
|
|
ut_ad(node->vision);
|
|
ut_ad(plan->unique_search);
|
|
ut_ad(!plan->must_get_clust);
|
|
#ifdef UNIV_DEBUG
|
|
if (search_latch_locked) {
|
|
ut_ad(rw_lock_own(btr_get_search_latch(index), RW_LOCK_S));
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
row_sel_open_pcur(plan, search_latch_locked, mtr);
|
|
|
|
rec = btr_pcur_get_rec(&(plan->pcur));
|
|
|
|
if (!page_rec_is_user_rec(rec)) {
|
|
return (SEL_RETRY);
|
|
}
|
|
|
|
ut_ad(plan->mode == PAGE_CUR_GE);
|
|
|
|
/* As the cursor is now placed on a user record after a search with
|
|
the mode PAGE_CUR_GE, the up_match field in the cursor tells how many
|
|
fields in the user record matched to the search tuple */
|
|
|
|
if (btr_pcur_get_up_match(&(plan->pcur)) < plan->n_exact_match) {
|
|
return (SEL_EXHAUSTED);
|
|
}
|
|
|
|
/* This is a non-locking consistent read: if necessary, fetch
|
|
a previous version of the record */
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap);
|
|
|
|
if (index->is_clustered()) {
|
|
if (!lock_clust_rec_cons_read_sees(rec, index, offsets,
|
|
/**TODO: Add cleanout logic */
|
|
nullptr, node->vision)) {
|
|
ret = SEL_RETRY;
|
|
goto func_exit;
|
|
}
|
|
} else if (!srv_read_only_mode &&
|
|
!lock_sec_rec_cons_read_sees(rec, index, node->vision)) {
|
|
ret = SEL_RETRY;
|
|
goto func_exit;
|
|
}
|
|
|
|
/* Test the deleted flag. */
|
|
|
|
if (rec_get_deleted_flag(rec, dict_table_is_comp(plan->table))) {
|
|
ret = SEL_EXHAUSTED;
|
|
goto func_exit;
|
|
}
|
|
|
|
/* Fetch the columns needed in test conditions. The index
|
|
record is protected by a page latch that was acquired when
|
|
plan->pcur was positioned. The latch will not be released
|
|
until mtr_commit(mtr). */
|
|
|
|
row_sel_fetch_columns(trx, index, rec, offsets,
|
|
UT_LIST_GET_FIRST(plan->columns));
|
|
|
|
/* Test the rest of search conditions */
|
|
|
|
if (!row_sel_test_other_conds(plan)) {
|
|
ret = SEL_EXHAUSTED;
|
|
goto func_exit;
|
|
}
|
|
|
|
ut_ad(plan->pcur.m_latch_mode == BTR_SEARCH_LEAF);
|
|
|
|
plan->n_rows_fetched++;
|
|
ret = SEL_FOUND;
|
|
func_exit:
|
|
if (UNIV_LIKELY_NULL(heap)) {
|
|
mem_heap_free(heap);
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
/** Performs a select step.
|
|
@return DB_SUCCESS or error code */
|
|
static MY_ATTRIBUTE((warn_unused_result)) dberr_t
|
|
row_sel(sel_node_t *node, /*!< in: select node */
|
|
que_thr_t *thr) /*!< in: query thread */
|
|
{
|
|
dict_index_t *index;
|
|
plan_t *plan;
|
|
mtr_t mtr;
|
|
ibool moved;
|
|
rec_t *rec;
|
|
rec_t *old_vers;
|
|
rec_t *clust_rec;
|
|
ibool search_latch_locked;
|
|
ibool consistent_read;
|
|
|
|
/* The following flag becomes TRUE when we are doing a
|
|
consistent read from a non-clustered index and we must look
|
|
at the clustered index to find out the previous delete mark
|
|
state of the non-clustered record: */
|
|
|
|
ibool cons_read_requires_clust_rec = FALSE;
|
|
ulint cost_counter = 0;
|
|
ibool cursor_just_opened;
|
|
ibool must_go_to_next;
|
|
ibool mtr_has_extra_clust_latch = FALSE;
|
|
/* TRUE if the search was made using
|
|
a non-clustered index, and we had to
|
|
access the clustered record: now &mtr
|
|
contains a clustered index latch, and
|
|
&mtr must be committed before we move
|
|
to the next non-clustered record */
|
|
ulint found_flag;
|
|
dberr_t err;
|
|
mem_heap_t *heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint *offsets = offsets_;
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_ad(thr->run_node == node);
|
|
|
|
search_latch_locked = FALSE;
|
|
|
|
if (node->vision) {
|
|
/* In consistent reads, we try to do with the hash index and
|
|
not to use the buffer page get. This is to reduce memory bus
|
|
load resulting from semaphore operations. The search latch
|
|
will be s-locked when we access an index with a unique search
|
|
condition, but not locked when we access an index with a
|
|
less selective search condition. */
|
|
|
|
consistent_read = TRUE;
|
|
} else {
|
|
consistent_read = FALSE;
|
|
}
|
|
|
|
table_loop:
|
|
/* TABLE LOOP
|
|
----------
|
|
This is the outer major loop in calculating a join. We come here when
|
|
node->fetch_table changes, and after adding a row to aggregate totals
|
|
and, of course, when this function is called. */
|
|
|
|
ut_ad(mtr_has_extra_clust_latch == FALSE);
|
|
|
|
plan = sel_node_get_nth_plan(node, node->fetch_table);
|
|
index = plan->index;
|
|
|
|
if (plan->n_rows_prefetched > 0) {
|
|
sel_dequeue_prefetched_row(plan);
|
|
|
|
goto next_table_no_mtr;
|
|
}
|
|
|
|
if (plan->cursor_at_end) {
|
|
/* The cursor has already reached the result set end: no more
|
|
rows to process for this table cursor, as also the prefetch
|
|
stack was empty */
|
|
|
|
ut_ad(plan->pcur_is_open);
|
|
|
|
goto table_exhausted_no_mtr;
|
|
}
|
|
|
|
/* Open a cursor to index, or restore an open cursor position */
|
|
|
|
mtr_start(&mtr);
|
|
|
|
if (consistent_read && plan->unique_search && !plan->pcur_is_open &&
|
|
!plan->must_get_clust && !plan->table->big_rows) {
|
|
if (!search_latch_locked) {
|
|
rw_lock_s_lock(btr_get_search_latch(index));
|
|
|
|
search_latch_locked = TRUE;
|
|
} else if (rw_lock_get_writer(btr_get_search_latch(index)) ==
|
|
RW_LOCK_X_WAIT) {
|
|
/* There is an x-latch request waiting: release the
|
|
s-latch for a moment; as an s-latch here is often
|
|
kept for some 10 searches before being released,
|
|
a waiting x-latch request would block other threads
|
|
from acquiring an s-latch for a long time, lowering
|
|
performance significantly in multiprocessors. */
|
|
|
|
rw_lock_s_unlock(btr_get_search_latch(index));
|
|
rw_lock_s_lock(btr_get_search_latch(index));
|
|
}
|
|
|
|
found_flag = row_sel_try_search_shortcut(thr_get_trx(thr), node, plan,
|
|
search_latch_locked, &mtr);
|
|
|
|
if (found_flag == SEL_FOUND) {
|
|
goto next_table;
|
|
|
|
} else if (found_flag == SEL_EXHAUSTED) {
|
|
goto table_exhausted;
|
|
}
|
|
|
|
ut_ad(found_flag == SEL_RETRY);
|
|
|
|
plan_reset_cursor(plan);
|
|
|
|
mtr_commit(&mtr);
|
|
mtr_start(&mtr);
|
|
}
|
|
|
|
if (search_latch_locked) {
|
|
rw_lock_s_unlock(btr_get_search_latch(index));
|
|
|
|
search_latch_locked = FALSE;
|
|
}
|
|
|
|
if (!plan->pcur_is_open) {
|
|
/* Evaluate the expressions to build the search tuple and
|
|
open the cursor */
|
|
|
|
row_sel_open_pcur(plan, search_latch_locked, &mtr);
|
|
|
|
cursor_just_opened = TRUE;
|
|
|
|
/* A new search was made: increment the cost counter */
|
|
cost_counter++;
|
|
} else {
|
|
/* Restore pcur position to the index */
|
|
|
|
must_go_to_next = row_sel_restore_pcur_pos(plan, &mtr);
|
|
|
|
cursor_just_opened = FALSE;
|
|
|
|
if (must_go_to_next) {
|
|
/* We have already processed the cursor record: move
|
|
to the next */
|
|
|
|
goto next_rec;
|
|
}
|
|
}
|
|
|
|
rec_loop:
|
|
/* RECORD LOOP
|
|
-----------
|
|
In this loop we use pcur and try to fetch a qualifying row, and
|
|
also fill the prefetch buffer for this table if n_rows_fetched has
|
|
exceeded a threshold. While we are inside this loop, the following
|
|
holds:
|
|
(1) &mtr is started,
|
|
(2) pcur is positioned and open.
|
|
|
|
NOTE that if cursor_just_opened is TRUE here, it means that we came
|
|
to this point right after row_sel_open_pcur. */
|
|
|
|
ut_ad(mtr_has_extra_clust_latch == FALSE);
|
|
|
|
rec = btr_pcur_get_rec(&(plan->pcur));
|
|
|
|
/* PHASE 1: Set a lock if specified */
|
|
|
|
if (!node->asc && cursor_just_opened && !page_rec_is_supremum(rec)) {
|
|
/* Do not support "descending search" for Spatial index */
|
|
ut_ad(!dict_index_is_spatial(index));
|
|
|
|
/* When we open a cursor for a descending search, we must set
|
|
a next-key lock on the successor record: otherwise it would
|
|
be possible to insert new records next to the cursor position,
|
|
and it might be that these new records should appear in the
|
|
search result set, resulting in the phantom problem. */
|
|
|
|
if (!consistent_read) {
|
|
rec_t *next_rec = page_rec_get_next(rec);
|
|
ulint lock_type;
|
|
trx_t *trx;
|
|
|
|
trx = thr_get_trx(thr);
|
|
|
|
offsets =
|
|
rec_get_offsets(next_rec, index, offsets, ULINT_UNDEFINED, &heap);
|
|
|
|
if (trx->skip_gap_locks()) {
|
|
if (page_rec_is_supremum(next_rec)) {
|
|
goto skip_lock;
|
|
}
|
|
|
|
lock_type = LOCK_REC_NOT_GAP;
|
|
} else {
|
|
lock_type = LOCK_ORDINARY;
|
|
}
|
|
|
|
err = sel_set_rec_lock(&plan->pcur, next_rec, index, offsets,
|
|
SELECT_ORDINARY, node->row_lock_mode, lock_type,
|
|
thr, &mtr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
err = DB_SUCCESS;
|
|
case DB_SUCCESS:
|
|
break;
|
|
default:
|
|
/* Note that in this case we will store in pcur
|
|
the PREDECESSOR of the record we are waiting
|
|
the lock for */
|
|
goto lock_wait_or_error;
|
|
}
|
|
}
|
|
}
|
|
|
|
skip_lock:
|
|
if (page_rec_is_infimum(rec)) {
|
|
/* The infimum record on a page cannot be in the result set,
|
|
and neither can a record lock be placed on it: we skip such
|
|
a record. We also increment the cost counter as we may have
|
|
processed yet another page of index. */
|
|
|
|
cost_counter++;
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
if (!consistent_read) {
|
|
/* Try to place a lock on the index record */
|
|
|
|
ulint lock_type;
|
|
trx_t *trx;
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap);
|
|
|
|
trx = thr_get_trx(thr);
|
|
|
|
if (trx->skip_gap_locks() || dict_index_is_spatial(index)) {
|
|
if (page_rec_is_supremum(rec)) {
|
|
goto next_rec;
|
|
}
|
|
|
|
lock_type = LOCK_REC_NOT_GAP;
|
|
} else {
|
|
lock_type = LOCK_ORDINARY;
|
|
}
|
|
|
|
err = sel_set_rec_lock(&plan->pcur, rec, index, offsets, SELECT_ORDINARY,
|
|
node->row_lock_mode, lock_type, thr, &mtr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
err = DB_SUCCESS;
|
|
case DB_SUCCESS:
|
|
break;
|
|
default:
|
|
goto lock_wait_or_error;
|
|
}
|
|
}
|
|
|
|
if (page_rec_is_supremum(rec)) {
|
|
/* A page supremum record cannot be in the result set: skip
|
|
it now when we have placed a possible lock on it */
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
ut_ad(page_rec_is_user_rec(rec));
|
|
|
|
if (cost_counter > SEL_COST_LIMIT) {
|
|
/* Now that we have placed the necessary locks, we can stop
|
|
for a while and store the cursor position; NOTE that if we
|
|
would store the cursor position BEFORE placing a record lock,
|
|
it might happen that the cursor would jump over some records
|
|
that another transaction could meanwhile insert adjacent to
|
|
the cursor: this would result in the phantom problem. */
|
|
|
|
goto stop_for_a_while;
|
|
}
|
|
|
|
/* PHASE 2: Check a mixed index mix id if needed */
|
|
|
|
if (plan->unique_search && cursor_just_opened) {
|
|
ut_ad(plan->mode == PAGE_CUR_GE);
|
|
|
|
/* As the cursor is now placed on a user record after a search
|
|
with the mode PAGE_CUR_GE, the up_match field in the cursor
|
|
tells how many fields in the user record matched to the search
|
|
tuple */
|
|
|
|
if (btr_pcur_get_up_match(&(plan->pcur)) < plan->n_exact_match) {
|
|
goto table_exhausted;
|
|
}
|
|
|
|
/* Ok, no need to test end_conds or mix id */
|
|
}
|
|
|
|
/* We are ready to look at a possible new index entry in the result
|
|
set: the cursor is now placed on a user record */
|
|
|
|
/* PHASE 3: Get previous version in a consistent read */
|
|
|
|
cons_read_requires_clust_rec = FALSE;
|
|
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap);
|
|
|
|
if (consistent_read) {
|
|
/* This is a non-locking consistent read: if necessary, fetch
|
|
a previous version of the record */
|
|
|
|
if (index->is_clustered()) {
|
|
if (!lock_clust_rec_cons_read_sees(rec, index, offsets,
|
|
/**TODO: cleanout logic */
|
|
nullptr, node->vision)) {
|
|
err = row_sel_build_prev_vers(node->vision, index, rec, &offsets,
|
|
&heap, &plan->old_vers_heap, &old_vers,
|
|
&mtr);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
if (old_vers == NULL) {
|
|
/* The record does not exist
|
|
in our read view. Skip it, but
|
|
first attempt to determine
|
|
whether the index segment we
|
|
are searching through has been
|
|
exhausted. */
|
|
|
|
offsets =
|
|
rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap);
|
|
|
|
/* Fetch the columns needed in
|
|
test conditions. The clustered
|
|
index record is protected by a
|
|
page latch that was acquired
|
|
by row_sel_open_pcur() or
|
|
row_sel_restore_pcur_pos().
|
|
The latch will not be released
|
|
until mtr_commit(mtr). */
|
|
|
|
row_sel_fetch_columns(thr_get_trx(thr), index, rec, offsets,
|
|
UT_LIST_GET_FIRST(plan->columns));
|
|
|
|
if (!row_sel_test_end_conds(plan)) {
|
|
goto table_exhausted;
|
|
}
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
rec = old_vers;
|
|
}
|
|
} else if (!srv_read_only_mode &&
|
|
!lock_sec_rec_cons_read_sees(rec, index, node->vision)) {
|
|
cons_read_requires_clust_rec = TRUE;
|
|
}
|
|
}
|
|
|
|
/* PHASE 4: Test search end conditions and deleted flag */
|
|
|
|
/* Fetch the columns needed in test conditions. The record is
|
|
protected by a page latch that was acquired by
|
|
row_sel_open_pcur() or row_sel_restore_pcur_pos(). The latch
|
|
will not be released until mtr_commit(mtr). */
|
|
|
|
row_sel_fetch_columns(thr_get_trx(thr), index, rec, offsets,
|
|
UT_LIST_GET_FIRST(plan->columns));
|
|
|
|
/* Test the selection end conditions: these can only contain columns
|
|
which already are found in the index, even though the index might be
|
|
non-clustered */
|
|
|
|
if (plan->unique_search && cursor_just_opened) {
|
|
/* No test necessary: the test was already made above */
|
|
|
|
} else if (!row_sel_test_end_conds(plan)) {
|
|
goto table_exhausted;
|
|
}
|
|
|
|
if (rec_get_deleted_flag(rec, dict_table_is_comp(plan->table)) &&
|
|
!cons_read_requires_clust_rec) {
|
|
/* The record is delete marked: we can skip it if this is
|
|
not a consistent read which might see an earlier version
|
|
of a non-clustered index record */
|
|
|
|
if (plan->unique_search) {
|
|
goto table_exhausted;
|
|
}
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
/* PHASE 5: Get the clustered index record, if needed and if we did
|
|
not do the search using the clustered index */
|
|
|
|
if (plan->must_get_clust || cons_read_requires_clust_rec) {
|
|
/* It was a non-clustered index and we must fetch also the
|
|
clustered index record */
|
|
|
|
err = row_sel_get_clust_rec(node, plan, rec, thr, &clust_rec, &mtr);
|
|
mtr_has_extra_clust_latch = TRUE;
|
|
|
|
if (err != DB_SUCCESS) {
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
/* Retrieving the clustered record required a search:
|
|
increment the cost counter */
|
|
|
|
cost_counter++;
|
|
|
|
if (clust_rec == NULL) {
|
|
/* The record did not exist in the read view */
|
|
ut_ad(consistent_read);
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
if (rec_get_deleted_flag(clust_rec, dict_table_is_comp(plan->table))) {
|
|
/* The record is delete marked: we can skip it */
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
if (node->can_get_updated) {
|
|
btr_pcur_store_position(&(plan->clust_pcur), &mtr);
|
|
}
|
|
}
|
|
|
|
/* PHASE 6: Test the rest of search conditions */
|
|
|
|
if (!row_sel_test_other_conds(plan)) {
|
|
if (plan->unique_search) {
|
|
goto table_exhausted;
|
|
}
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
/* PHASE 7: We found a new qualifying row for the current table; push
|
|
the row if prefetch is on, or move to the next table in the join */
|
|
|
|
plan->n_rows_fetched++;
|
|
|
|
ut_ad(plan->pcur.m_latch_mode == BTR_SEARCH_LEAF);
|
|
|
|
if ((plan->n_rows_fetched <= SEL_PREFETCH_LIMIT) || plan->unique_search ||
|
|
plan->no_prefetch || plan->table->big_rows) {
|
|
/* No prefetch in operation: go to the next table */
|
|
|
|
goto next_table;
|
|
}
|
|
|
|
sel_enqueue_prefetched_row(plan);
|
|
|
|
if (plan->n_rows_prefetched == SEL_MAX_N_PREFETCH) {
|
|
/* The prefetch buffer is now full */
|
|
|
|
sel_dequeue_prefetched_row(plan);
|
|
|
|
goto next_table;
|
|
}
|
|
|
|
next_rec:
|
|
ut_ad(!search_latch_locked);
|
|
|
|
if (mtr_has_extra_clust_latch) {
|
|
/* We must commit &mtr if we are moving to the next
|
|
non-clustered index record, because we could break the
|
|
latching order if we would access a different clustered
|
|
index page right away without releasing the previous. */
|
|
|
|
goto commit_mtr_for_a_while;
|
|
}
|
|
|
|
if (node->asc) {
|
|
moved = btr_pcur_move_to_next(&(plan->pcur), &mtr);
|
|
} else {
|
|
moved = btr_pcur_move_to_prev(&(plan->pcur), &mtr);
|
|
}
|
|
|
|
if (!moved) {
|
|
goto table_exhausted;
|
|
}
|
|
|
|
cursor_just_opened = FALSE;
|
|
|
|
/* END OF RECORD LOOP
|
|
------------------ */
|
|
goto rec_loop;
|
|
|
|
next_table:
|
|
/* We found a record which satisfies the conditions: we can move to
|
|
the next table or return a row in the result set */
|
|
|
|
ut_ad(btr_pcur_is_on_user_rec(&plan->pcur));
|
|
|
|
if (plan->unique_search && !node->can_get_updated) {
|
|
plan->cursor_at_end = TRUE;
|
|
} else {
|
|
ut_ad(!search_latch_locked);
|
|
|
|
plan->stored_cursor_rec_processed = TRUE;
|
|
|
|
btr_pcur_store_position(&(plan->pcur), &mtr);
|
|
}
|
|
|
|
mtr_commit(&mtr);
|
|
|
|
mtr_has_extra_clust_latch = FALSE;
|
|
|
|
next_table_no_mtr:
|
|
/* If we use 'goto' to this label, it means that the row was popped
|
|
from the prefetched rows stack, and &mtr is already committed */
|
|
|
|
if (node->fetch_table + 1 == node->n_tables) {
|
|
sel_eval_select_list(node);
|
|
|
|
if (node->is_aggregate) {
|
|
goto table_loop;
|
|
}
|
|
|
|
sel_assign_into_var_values(node->into_list, node);
|
|
|
|
thr->run_node = que_node_get_parent(node);
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
}
|
|
|
|
node->fetch_table++;
|
|
|
|
/* When we move to the next table, we first reset the plan cursor:
|
|
we do not care about resetting it when we backtrack from a table */
|
|
|
|
plan_reset_cursor(sel_node_get_nth_plan(node, node->fetch_table));
|
|
|
|
goto table_loop;
|
|
|
|
table_exhausted:
|
|
/* The table cursor pcur reached the result set end: backtrack to the
|
|
previous table in the join if we do not have cached prefetched rows */
|
|
|
|
plan->cursor_at_end = TRUE;
|
|
|
|
mtr_commit(&mtr);
|
|
|
|
mtr_has_extra_clust_latch = FALSE;
|
|
|
|
if (plan->n_rows_prefetched > 0) {
|
|
/* The table became exhausted during a prefetch */
|
|
|
|
sel_dequeue_prefetched_row(plan);
|
|
|
|
goto next_table_no_mtr;
|
|
}
|
|
|
|
table_exhausted_no_mtr:
|
|
if (node->fetch_table == 0) {
|
|
err = DB_SUCCESS;
|
|
|
|
if (node->is_aggregate && !node->aggregate_already_fetched) {
|
|
node->aggregate_already_fetched = TRUE;
|
|
|
|
sel_assign_into_var_values(node->into_list, node);
|
|
|
|
thr->run_node = que_node_get_parent(node);
|
|
} else {
|
|
node->state = SEL_NODE_NO_MORE_ROWS;
|
|
|
|
thr->run_node = que_node_get_parent(node);
|
|
}
|
|
|
|
goto func_exit;
|
|
}
|
|
|
|
node->fetch_table--;
|
|
|
|
goto table_loop;
|
|
|
|
stop_for_a_while:
|
|
/* Return control for a while to que_run_threads, so that runaway
|
|
queries can be canceled. NOTE that when we come here, we must, in a
|
|
locking read, have placed the necessary (possibly waiting request)
|
|
record lock on the cursor record or its successor: when we reposition
|
|
the cursor, this record lock guarantees that nobody can meanwhile have
|
|
inserted new records which should have appeared in the result set,
|
|
which would result in the phantom problem. */
|
|
|
|
ut_ad(!search_latch_locked);
|
|
|
|
plan->stored_cursor_rec_processed = FALSE;
|
|
btr_pcur_store_position(&(plan->pcur), &mtr);
|
|
|
|
mtr_commit(&mtr);
|
|
|
|
#ifdef UNIV_DEBUG
|
|
{
|
|
btrsea_sync_check check(true);
|
|
|
|
ut_ad(!sync_check_iterate(check));
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
|
|
commit_mtr_for_a_while:
|
|
/* Stores the cursor position and commits &mtr; this is used if
|
|
&mtr may contain latches which would break the latching order if
|
|
&mtr would not be committed and the latches released. */
|
|
|
|
plan->stored_cursor_rec_processed = TRUE;
|
|
|
|
ut_ad(!search_latch_locked);
|
|
btr_pcur_store_position(&(plan->pcur), &mtr);
|
|
|
|
mtr_commit(&mtr);
|
|
|
|
mtr_has_extra_clust_latch = FALSE;
|
|
|
|
#ifdef UNIV_DEBUG
|
|
{
|
|
dict_sync_check check(true);
|
|
|
|
ut_ad(!sync_check_iterate(check));
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
goto table_loop;
|
|
|
|
lock_wait_or_error:
|
|
/* See the note at stop_for_a_while: the same holds for this case */
|
|
|
|
ut_ad(!btr_pcur_is_before_first_on_page(&plan->pcur) || !node->asc);
|
|
ut_ad(!search_latch_locked);
|
|
|
|
plan->stored_cursor_rec_processed = FALSE;
|
|
btr_pcur_store_position(&(plan->pcur), &mtr);
|
|
|
|
mtr_commit(&mtr);
|
|
|
|
#ifdef UNIV_DEBUG
|
|
{
|
|
dict_sync_check check(true);
|
|
|
|
ut_ad(!sync_check_iterate(check));
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
func_exit:
|
|
if (search_latch_locked) {
|
|
rw_lock_s_unlock(btr_get_search_latch(index));
|
|
}
|
|
|
|
if (heap != NULL) {
|
|
mem_heap_free(heap);
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
/** Performs a select step. This is a high-level function used in SQL execution
|
|
graphs.
|
|
@return query thread to run next or NULL */
|
|
que_thr_t *row_sel_step(que_thr_t *thr) /*!< in: query thread */
|
|
{
|
|
sel_node_t *node;
|
|
|
|
ut_ad(thr);
|
|
|
|
node = static_cast<sel_node_t *>(thr->run_node);
|
|
|
|
ut_ad(que_node_get_type(node) == QUE_NODE_SELECT);
|
|
|
|
/* If this is a new time this node is executed (or when execution
|
|
resumes after wait for a table intention lock), set intention locks
|
|
on the tables, or assign a read view */
|
|
|
|
if (node->into_list && (thr->prev_node == que_node_get_parent(node))) {
|
|
node->state = SEL_NODE_OPEN;
|
|
}
|
|
|
|
if (node->state == SEL_NODE_OPEN) {
|
|
/* It may be that the current session has not yet started
|
|
its transaction, or it has been committed: */
|
|
|
|
trx_start_if_not_started_xa(thr_get_trx(thr), false);
|
|
|
|
plan_reset_cursor(sel_node_get_nth_plan(node, 0));
|
|
|
|
if (node->consistent_read) {
|
|
/* Assign a read view for the query */
|
|
trx_assign_read_view(thr_get_trx(thr));
|
|
|
|
if (thr_get_trx(thr)->vision.is_active()) {
|
|
node->vision = &thr_get_trx(thr)->vision;
|
|
} else {
|
|
node->vision = NULL;
|
|
}
|
|
|
|
} else {
|
|
sym_node_t *table_node;
|
|
lock_mode i_lock_mode;
|
|
|
|
if (node->set_x_locks) {
|
|
i_lock_mode = LOCK_IX;
|
|
} else {
|
|
i_lock_mode = LOCK_IS;
|
|
}
|
|
|
|
for (table_node = node->table_list; table_node != 0;
|
|
table_node =
|
|
static_cast<sym_node_t *>(que_node_get_next(table_node))) {
|
|
dberr_t err = lock_table(0, table_node->table, i_lock_mode, thr);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
trx_t *trx;
|
|
|
|
trx = thr_get_trx(thr);
|
|
trx->error_state = err;
|
|
|
|
return (NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If this is an explicit cursor, copy stored procedure
|
|
variable values, so that the values cannot change between
|
|
fetches (currently, we copy them also for non-explicit
|
|
cursors) */
|
|
|
|
if (node->explicit_cursor && UT_LIST_GET_FIRST(node->copy_variables)) {
|
|
row_sel_copy_input_variable_vals(node);
|
|
}
|
|
|
|
node->state = SEL_NODE_FETCH;
|
|
node->fetch_table = 0;
|
|
|
|
if (node->is_aggregate) {
|
|
/* Reset the aggregate total values */
|
|
sel_reset_aggregate_vals(node);
|
|
}
|
|
}
|
|
|
|
dberr_t err = row_sel(node, thr);
|
|
|
|
/* NOTE! if queries are parallelized, the following assignment may
|
|
have problems; the assignment should be made only if thr is the
|
|
only top-level thr in the graph: */
|
|
|
|
thr->graph->last_sel_node = node;
|
|
|
|
if (err != DB_SUCCESS) {
|
|
thr_get_trx(thr)->error_state = err;
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
return (thr);
|
|
}
|
|
|
|
/** Performs a fetch for a cursor.
|
|
@return query thread to run next or NULL */
|
|
que_thr_t *fetch_step(que_thr_t *thr) /*!< in: query thread */
|
|
{
|
|
sel_node_t *sel_node;
|
|
fetch_node_t *node;
|
|
|
|
ut_ad(thr);
|
|
|
|
node = static_cast<fetch_node_t *>(thr->run_node);
|
|
sel_node = node->cursor_def;
|
|
|
|
ut_ad(que_node_get_type(node) == QUE_NODE_FETCH);
|
|
|
|
if (thr->prev_node != que_node_get_parent(node)) {
|
|
if (sel_node->state != SEL_NODE_NO_MORE_ROWS) {
|
|
if (node->into_list) {
|
|
sel_assign_into_var_values(node->into_list, sel_node);
|
|
} else {
|
|
ibool ret = (*node->func->func)(sel_node, node->func->arg);
|
|
|
|
if (!ret) {
|
|
sel_node->state = SEL_NODE_NO_MORE_ROWS;
|
|
}
|
|
}
|
|
}
|
|
|
|
thr->run_node = que_node_get_parent(node);
|
|
|
|
return (thr);
|
|
}
|
|
|
|
/* Make the fetch node the parent of the cursor definition for
|
|
the time of the fetch, so that execution knows to return to this
|
|
fetch node after a row has been selected or we know that there is
|
|
no row left */
|
|
|
|
sel_node->common.parent = node;
|
|
|
|
if (sel_node->state == SEL_NODE_CLOSED) {
|
|
ib::error(ER_IB_MSG_1027) << "fetch called on a closed cursor";
|
|
|
|
thr_get_trx(thr)->error_state = DB_ERROR;
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
thr->run_node = sel_node;
|
|
|
|
return (thr);
|
|
}
|
|
|
|
/** Converts a key value stored in MySQL format to an Innobase dtuple. The last
|
|
field of the key value may be just a prefix of a fixed length field: hence
|
|
the parameter key_len. But currently we do not allow search keys where the
|
|
last field is only a prefix of the full key field len and print a warning if
|
|
such appears. A counterpart of this function is
|
|
ha_innobase::store_key_val_for_row() in ha_innodb.cc. */
|
|
void row_sel_convert_mysql_key_to_innobase(
|
|
dtuple_t *tuple, /*!< in/out: tuple where to build;
|
|
NOTE: we assume that the type info
|
|
in the tuple is already according
|
|
to index! */
|
|
byte *buf, /*!< in: buffer to use in field
|
|
conversions; NOTE that dtuple->data
|
|
may end up pointing inside buf so
|
|
do not discard that buffer while
|
|
the tuple is being used. See
|
|
row_mysql_store_col_in_innobase_format()
|
|
in the case of DATA_INT */
|
|
ulint buf_len, /*!< in: buffer length */
|
|
dict_index_t *index, /*!< in: index of the key value */
|
|
const byte *key_ptr, /*!< in: MySQL key value */
|
|
ulint key_len, /*!< in: MySQL key value length */
|
|
trx_t *trx) /*!< in: transaction */
|
|
{
|
|
byte *original_buf = buf;
|
|
const byte *original_key_ptr = key_ptr;
|
|
dict_field_t *field;
|
|
dfield_t *dfield;
|
|
ulint data_offset;
|
|
ulint data_len;
|
|
ulint data_field_len;
|
|
ibool is_null;
|
|
const byte *key_end;
|
|
ulint n_fields = 0;
|
|
|
|
/* For documentation of the key value storage format in MySQL, see
|
|
ha_innobase::store_key_val_for_row() in ha_innodb.cc. */
|
|
|
|
key_end = key_ptr + key_len;
|
|
|
|
/* Permit us to access any field in the tuple (ULINT_MAX): */
|
|
|
|
dtuple_set_n_fields(tuple, ULINT_MAX);
|
|
|
|
dfield = dtuple_get_nth_field(tuple, 0);
|
|
field = index->get_field(0);
|
|
|
|
if (UNIV_UNLIKELY(dfield_get_type(dfield)->mtype == DATA_SYS)) {
|
|
/* A special case: we are looking for a position in the
|
|
generated clustered index which InnoDB automatically added
|
|
to a table with no primary key: the first and the only
|
|
ordering column is ROW_ID which InnoDB stored to the key_ptr
|
|
buffer. */
|
|
|
|
ut_a(key_len == DATA_ROW_ID_LEN);
|
|
|
|
dfield_set_data(dfield, key_ptr, DATA_ROW_ID_LEN);
|
|
|
|
dtuple_set_n_fields(tuple, 1);
|
|
|
|
return;
|
|
}
|
|
|
|
while (key_ptr < key_end) {
|
|
ulint type = dfield_get_type(dfield)->mtype;
|
|
ut_a(field->col->mtype == type);
|
|
|
|
data_offset = 0;
|
|
is_null = FALSE;
|
|
|
|
if (!(dfield_get_type(dfield)->prtype & DATA_NOT_NULL)) {
|
|
/* The first byte in the field tells if this is
|
|
an SQL NULL value */
|
|
|
|
data_offset = 1;
|
|
|
|
if (*key_ptr != 0) {
|
|
dfield_set_null(dfield);
|
|
|
|
is_null = TRUE;
|
|
}
|
|
}
|
|
|
|
/* Calculate data length and data field total length */
|
|
if (DATA_LARGE_MTYPE(type) || DATA_GEOMETRY_MTYPE(type)) {
|
|
/* For R-tree index, data length should be the
|
|
total size of the wkb data.*/
|
|
if (dict_index_is_spatial(index)) {
|
|
ut_ad(DATA_GEOMETRY_MTYPE(type));
|
|
data_len = key_len;
|
|
data_field_len = data_offset + data_len;
|
|
} else {
|
|
/* The key field is a column prefix of a BLOB
|
|
or TEXT, except DATA_POINT of GEOMETRY. */
|
|
|
|
ut_a(field->prefix_len > 0 || DATA_POINT_MTYPE(type));
|
|
|
|
/* MySQL stores the actual data length to the
|
|
first 2 bytes after the optional SQL NULL
|
|
marker byte. The storage format is
|
|
little-endian, that is, the most significant
|
|
byte at a higher address. In UTF-8, MySQL
|
|
seems to reserve field->prefix_len bytes for
|
|
storing this field in the key value buffer,
|
|
even though the actual value only takes data
|
|
len bytes from the start.
|
|
For POINT of GEOMETRY, which has no prefix
|
|
because it's now a fixed length type in
|
|
InnoDB, we have to get DATA_POINT_LEN bytes,
|
|
which is original prefix length of POINT. */
|
|
|
|
data_len = key_ptr[data_offset] + 256 * key_ptr[data_offset + 1];
|
|
data_field_len =
|
|
data_offset + 2 +
|
|
(type == DATA_POINT ? DATA_POINT_LEN : field->prefix_len);
|
|
|
|
data_offset += 2;
|
|
|
|
/* Now that we know the length, we store the
|
|
column value like it would be a fixed char
|
|
field */
|
|
}
|
|
|
|
} else if (field->prefix_len > 0) {
|
|
/* Looks like MySQL pads unused end bytes in the
|
|
prefix with space. Therefore, also in UTF-8, it is ok
|
|
to compare with a prefix containing full prefix_len
|
|
bytes, and no need to take at most prefix_len / 3
|
|
UTF-8 characters from the start.
|
|
If the prefix is used as the upper end of a LIKE
|
|
'abc%' query, then MySQL pads the end with chars
|
|
0xff. TODO: in that case does it any harm to compare
|
|
with the full prefix_len bytes. How do characters
|
|
0xff in UTF-8 behave? */
|
|
|
|
data_len = field->prefix_len;
|
|
data_field_len = data_offset + data_len;
|
|
} else {
|
|
data_len = dfield_get_type(dfield)->len;
|
|
data_field_len = data_offset + data_len;
|
|
}
|
|
|
|
if ((dtype_get_mysql_type(dfield_get_type(dfield)) ==
|
|
DATA_MYSQL_TRUE_VARCHAR) &&
|
|
(type != DATA_INT)) {
|
|
/* In a MySQL key value format, a true VARCHAR is
|
|
always preceded by 2 bytes of a length field.
|
|
dfield_get_type(dfield)->len returns the maximum
|
|
'payload' len in bytes. That does not include the
|
|
2 bytes that tell the actual data length.
|
|
|
|
We added the check != DATA_INT to make sure we do
|
|
not treat MySQL ENUM or SET as a true VARCHAR! */
|
|
|
|
data_len += 2;
|
|
data_field_len += 2;
|
|
}
|
|
|
|
/* Storing may use at most data_len bytes of buf */
|
|
|
|
if (UNIV_LIKELY(!is_null)) {
|
|
buf = row_mysql_store_col_in_innobase_format(
|
|
dfield, buf, FALSE, /* MySQL key value format col */
|
|
key_ptr + data_offset, data_len, dict_table_is_comp(index->table));
|
|
ut_a(buf <= original_buf + buf_len);
|
|
}
|
|
|
|
key_ptr += data_field_len;
|
|
|
|
if (UNIV_UNLIKELY(key_ptr > key_end)) {
|
|
/* The last field in key was not a complete key field
|
|
but a prefix of it.
|
|
|
|
Print a warning about this! HA_READ_PREFIX_LAST does
|
|
not currently work in InnoDB with partial-field key
|
|
value prefixes. Since MySQL currently uses a padding
|
|
trick to calculate LIKE 'abc%' type queries there
|
|
should never be partial-field prefixes in searches. */
|
|
|
|
ib::warn(ER_IB_MSG_1028)
|
|
<< "Using a partial-field key prefix in"
|
|
" search, index "
|
|
<< index->name << " of table " << index->table->name
|
|
<< ". Last data field length " << data_field_len
|
|
<< " bytes, key ptr now"
|
|
" exceeds key end by "
|
|
<< (key_ptr - key_end) << " bytes. Key value in the MySQL format:";
|
|
|
|
ut_print_buf(stderr, original_key_ptr, key_len);
|
|
putc('\n', stderr);
|
|
|
|
if (!is_null) {
|
|
ulint len = dfield_get_len(dfield);
|
|
dfield_set_len(dfield, len - (ulint)(key_ptr - key_end));
|
|
}
|
|
ut_ad(0);
|
|
}
|
|
|
|
n_fields++;
|
|
field++;
|
|
dfield++;
|
|
}
|
|
|
|
ut_a(buf <= original_buf + buf_len);
|
|
|
|
/* We set the length of tuple to n_fields: we assume that the memory
|
|
area allocated for it is big enough (usually bigger than n_fields). */
|
|
|
|
dtuple_set_n_fields(tuple, n_fields);
|
|
}
|
|
|
|
/** Stores the row id to the prebuilt struct. */
|
|
static void row_sel_store_row_id_to_prebuilt(
|
|
row_prebuilt_t *prebuilt, /*!< in/out: prebuilt */
|
|
const rec_t *index_rec, /*!< in: record */
|
|
const dict_index_t *index, /*!< in: index of the record */
|
|
const ulint *offsets) /*!< in: rec_get_offsets
|
|
(index_rec, index) */
|
|
{
|
|
const byte *data;
|
|
ulint len;
|
|
|
|
ut_ad(rec_offs_validate(index_rec, index, offsets));
|
|
|
|
data = rec_get_nth_field(index_rec, offsets,
|
|
index->get_sys_col_pos(DATA_ROW_ID), &len);
|
|
|
|
if (UNIV_UNLIKELY(len != DATA_ROW_ID_LEN)) {
|
|
ib::error(ER_IB_MSG_1029)
|
|
<< "Row id field is wrong length " << len
|
|
<< " in"
|
|
" index "
|
|
<< index->name << " of table " << index->table->name
|
|
<< ", Field number " << index->get_sys_col_pos(DATA_ROW_ID)
|
|
<< ", record:";
|
|
|
|
rec_print_new(stderr, index_rec, offsets);
|
|
putc('\n', stderr);
|
|
ut_error;
|
|
}
|
|
|
|
ut_memcpy(prebuilt->row_id, data, len);
|
|
}
|
|
|
|
#ifdef UNIV_DEBUG
|
|
/** Convert a non-SQL-NULL field from Innobase format to MySQL format. */
|
|
#define row_sel_field_store_in_mysql_format(dest, templ, idx, field, src, len, \
|
|
sec) \
|
|
row_sel_field_store_in_mysql_format_func(dest, templ, idx, field, src, len, \
|
|
sec)
|
|
#else /* UNIV_DEBUG */
|
|
/** Convert a non-SQL-NULL field from Innobase format to MySQL format. */
|
|
#define row_sel_field_store_in_mysql_format(dest, templ, idx, field, src, len, \
|
|
sec) \
|
|
row_sel_field_store_in_mysql_format_func(dest, templ, idx, src, len)
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/** Stores a non-SQL-NULL field in the MySQL format. The counterpart of this
|
|
function is row_mysql_store_col_in_innobase_format() in row0mysql.cc.
|
|
@param[in,out] dest buffer where to store; NOTE
|
|
that BLOBs are not in themselves stored
|
|
here: the caller must allocate and copy
|
|
the BLOB into buffer before, and pass
|
|
the pointer to the BLOB in 'data'
|
|
@param[in] templ MySQL column template. Its following fields
|
|
are referenced: type, is_unsigned,
|
|
mysql_col_len, mbminlen, mbmaxlen
|
|
@param[in] index InnoDB index
|
|
@param[in] field_no templ->rec_field_no or templ->clust_rec_field_no
|
|
or templ->icp_rec_field_no
|
|
@param[in] data data to store
|
|
@param[in] len length of the data
|
|
@param[in] sec_field secondary index field no if the secondary index
|
|
record but the prebuilt template is in
|
|
clustered index format and used only for end
|
|
range comparison. */
|
|
void row_sel_field_store_in_mysql_format_func(byte *dest,
|
|
const mysql_row_templ_t *templ,
|
|
const dict_index_t *index,
|
|
#ifdef UNIV_DEBUG
|
|
ulint field_no,
|
|
#endif /* UNIV_DEBUG */
|
|
const byte *data, ulint len
|
|
#ifdef UNIV_DEBUG
|
|
,
|
|
ulint sec_field
|
|
#endif /* UNIV_DEBUG */
|
|
) {
|
|
byte *ptr;
|
|
#ifdef UNIV_DEBUG
|
|
const dict_field_t *field =
|
|
templ->is_virtual ? NULL : index->get_field(field_no);
|
|
|
|
bool clust_templ_for_sec = (sec_field != ULINT_UNDEFINED);
|
|
#endif /* UNIV_DEBUG */
|
|
ulint mysql_col_len =
|
|
templ->is_multi_val ? templ->mysql_mvidx_len : templ->mysql_col_len;
|
|
|
|
ut_ad(rec_field_not_null_not_add_col_def(len));
|
|
UNIV_MEM_ASSERT_RW(data, len);
|
|
UNIV_MEM_ASSERT_W(dest, templ->mysql_col_len);
|
|
UNIV_MEM_INVALID(dest, templ->mysql_col_len);
|
|
|
|
switch (templ->type) {
|
|
const byte *field_end;
|
|
byte *pad;
|
|
case DATA_INT:
|
|
/* Convert integer data from Innobase to a little-endian
|
|
format, sign bit restored to normal */
|
|
|
|
ptr = dest + len;
|
|
|
|
for (;;) {
|
|
ptr--;
|
|
*ptr = *data;
|
|
if (ptr == dest) {
|
|
break;
|
|
}
|
|
data++;
|
|
}
|
|
|
|
if (!templ->is_unsigned) {
|
|
dest[len - 1] = (byte)(dest[len - 1] ^ 128);
|
|
}
|
|
|
|
ut_ad(mysql_col_len == len);
|
|
|
|
break;
|
|
|
|
case DATA_VARCHAR:
|
|
case DATA_VARMYSQL:
|
|
case DATA_BINARY:
|
|
field_end = dest + mysql_col_len;
|
|
|
|
if (templ->mysql_type == DATA_MYSQL_TRUE_VARCHAR) {
|
|
/* This is a >= 5.0.3 type true VARCHAR. Store the
|
|
length of the data to the first byte or the first
|
|
two bytes of dest. */
|
|
|
|
dest =
|
|
row_mysql_store_true_var_len(dest, len, templ->mysql_length_bytes);
|
|
/* Copy the actual data. Leave the rest of the
|
|
buffer uninitialized. */
|
|
memcpy(dest, data, len);
|
|
break;
|
|
}
|
|
|
|
/* Copy the actual data */
|
|
ut_memcpy(dest, data, len);
|
|
|
|
/* Pad with trailing spaces. */
|
|
|
|
pad = dest + len;
|
|
|
|
ut_ad(templ->mbminlen <= templ->mbmaxlen);
|
|
|
|
/* We treat some Unicode charset strings specially. */
|
|
switch (templ->mbminlen) {
|
|
case 4:
|
|
/* InnoDB should never have stripped partial
|
|
UTF-32 characters. */
|
|
ut_a(!(len & 3));
|
|
break;
|
|
case 2:
|
|
/* A space char is two bytes,
|
|
0x0020 in UCS2 and UTF-16 */
|
|
|
|
if (UNIV_UNLIKELY(len & 1)) {
|
|
/* A 0x20 has been stripped from the column.
|
|
Pad it back. */
|
|
|
|
if (pad < field_end) {
|
|
*pad++ = 0x20;
|
|
}
|
|
}
|
|
}
|
|
|
|
row_mysql_pad_col(templ->mbminlen, pad, field_end - pad);
|
|
break;
|
|
|
|
case DATA_BLOB:
|
|
/* Store a pointer to the BLOB buffer to dest: the BLOB was
|
|
already copied to the buffer in row_sel_store_mysql_rec */
|
|
|
|
row_mysql_store_blob_ref(dest, templ->mysql_col_len, data, len);
|
|
break;
|
|
|
|
case DATA_POINT:
|
|
case DATA_VAR_POINT:
|
|
case DATA_GEOMETRY:
|
|
/* We store all geometry data as BLOB data at server layer. */
|
|
row_mysql_store_geometry(dest, templ->mysql_col_len, data, len);
|
|
break;
|
|
|
|
case DATA_MYSQL:
|
|
memcpy(dest, data, len);
|
|
|
|
ut_ad(mysql_col_len >= len);
|
|
ut_ad(templ->mbmaxlen >= templ->mbminlen);
|
|
|
|
/* If field_no equals to templ->icp_rec_field_no,
|
|
we are examining a row pointed by "icp_rec_field_no".
|
|
There is possibility that icp_rec_field_no refers to
|
|
a field in a secondary index while templ->rec_field_no
|
|
points to field in a primary index. The length
|
|
should still be equal, unless the field pointed
|
|
by icp_rec_field_no has a prefix or this is a virtual
|
|
column */
|
|
ut_ad(templ->is_virtual || templ->mbmaxlen > templ->mbminlen ||
|
|
mysql_col_len == len ||
|
|
(field_no == templ->icp_rec_field_no && field->prefix_len > 0));
|
|
|
|
/* The following assertion would fail for old tables
|
|
containing UTF-8 ENUM columns due to Bug #9526. */
|
|
ut_ad(!templ->mbmaxlen || !(mysql_col_len % templ->mbmaxlen));
|
|
/* Length of the record will be less in case of
|
|
clust_templ_for_sec is true or if it is fetched
|
|
from prefix virtual column in virtual index. */
|
|
ut_ad(templ->is_virtual || clust_templ_for_sec ||
|
|
len * templ->mbmaxlen >= mysql_col_len ||
|
|
(field_no == templ->icp_rec_field_no && field->prefix_len > 0));
|
|
ut_ad(templ->is_virtual || !(field->prefix_len % templ->mbmaxlen));
|
|
|
|
/* Pad with spaces. This undoes the stripping
|
|
done in row0mysql.cc, function
|
|
row_mysql_store_col_in_innobase_format(). */
|
|
if ((templ->mbminlen == 1 && templ->mbmaxlen != 1) ||
|
|
(templ->is_virtual && templ->mysql_col_len > len)) {
|
|
/* NOTE: This comment is for the second condition:
|
|
This probably comes from a prefix virtual index, where no complete
|
|
value can be got because the full virtual column can only be
|
|
calculated in server layer for now. Since server now assumes the
|
|
returned value should always have padding spaces, thus the fixup.
|
|
However, a proper and more efficient solution is that server does
|
|
not depend on the trailing spaces to check the terminal of the CHAR
|
|
string, because at least in this case,server should know it's a prefix
|
|
index search and no complete value would be got. */
|
|
memset(dest + len, 0x20, mysql_col_len - len);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
#ifdef UNIV_DEBUG
|
|
case DATA_SYS_CHILD:
|
|
case DATA_SYS:
|
|
/* These column types should never be shipped to MySQL. */
|
|
ut_ad(0);
|
|
|
|
case DATA_CHAR:
|
|
case DATA_FIXBINARY:
|
|
case DATA_FLOAT:
|
|
case DATA_DOUBLE:
|
|
case DATA_DECIMAL:
|
|
/* Above are the valid column types for MySQL data. */
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/* If sec_field value is present then mapping of
|
|
secondary index records to clustered index template
|
|
happens for end range comparison. So length can
|
|
vary according to secondary index record length. */
|
|
ut_ad((templ->is_virtual && !field) ||
|
|
(field && field->prefix_len
|
|
? field->prefix_len == len
|
|
: clust_templ_for_sec ? 1 : mysql_col_len == len));
|
|
memcpy(dest, data, len);
|
|
}
|
|
}
|
|
|
|
/** Convert a field from Innobase format to MySQL format. */
|
|
#define row_sel_store_mysql_field(m, p, r, i, o, f, t, s, l, bh) \
|
|
row_sel_store_mysql_field_func(m, p, r, i, o, f, t, s, l, bh)
|
|
// clang-format off
|
|
/** Convert a field in the Innobase format to a field in the MySQL format.
|
|
@param[out] mysql_rec Record in the MySQL format
|
|
@param[in,out] prebuilt Prebuilt struct
|
|
@param[in] rec InnoDB record; must be protected by a page latch
|
|
@param[in] index Index of rec
|
|
@param[in] offsets Array returned by rec_get_offsets()
|
|
@param[in] field_no templ->rec_field_no or
|
|
templ->clust_rec_field_no
|
|
or templ->icp_rec_field_no
|
|
or sec field no if clust_templ_for_sec
|
|
is true
|
|
@param[in] templ Row template
|
|
@param[in] sec_field_no Secondary index field no if the secondary index
|
|
record but the prebuilt template is in
|
|
clustered index format and used only for end
|
|
range comparison.
|
|
@param[in] lob_undo the LOB undo information.
|
|
@param[in,out] blob_heap If not null then use this heap for BLOBs */
|
|
// clang-format on
|
|
static MY_ATTRIBUTE((warn_unused_result)) bool row_sel_store_mysql_field_func(
|
|
byte *mysql_rec, row_prebuilt_t *prebuilt, const rec_t *rec,
|
|
const dict_index_t *index, const ulint *offsets, ulint field_no,
|
|
const mysql_row_templ_t *templ, ulint sec_field_no,
|
|
lob::undo_vers_t *lob_undo, mem_heap_t *blob_heap) {
|
|
DBUG_TRACE;
|
|
|
|
const byte *data;
|
|
ulint len;
|
|
ulint clust_field_no = 0;
|
|
bool clust_templ_for_sec = (sec_field_no != ULINT_UNDEFINED);
|
|
|
|
ut_ad(templ);
|
|
ut_ad(prebuilt->default_rec);
|
|
ut_ad(templ >= prebuilt->mysql_template);
|
|
ut_ad(templ < &prebuilt->mysql_template[prebuilt->n_template]);
|
|
|
|
ut_ad(clust_templ_for_sec || field_no == templ->clust_rec_field_no ||
|
|
field_no == templ->rec_field_no || field_no == templ->icp_rec_field_no);
|
|
|
|
ut_ad(rec_offs_validate(
|
|
rec, clust_templ_for_sec == true ? prebuilt->index : index, offsets));
|
|
|
|
/* If sec_field_no is present then extract the data from record
|
|
using secondary field no. */
|
|
if (clust_templ_for_sec) {
|
|
clust_field_no = field_no;
|
|
field_no = sec_field_no;
|
|
}
|
|
|
|
if (rec_offs_nth_extern(offsets, field_no)) {
|
|
/* Copy an externally stored field to a temporary heap */
|
|
|
|
ut_a(!prebuilt->trx->has_search_latch);
|
|
ut_ad(field_no == templ->clust_rec_field_no);
|
|
ut_ad(templ->type != DATA_POINT);
|
|
|
|
mem_heap_t *heap;
|
|
|
|
if (DATA_LARGE_MTYPE(templ->type)) {
|
|
if (blob_heap != nullptr) {
|
|
heap = blob_heap;
|
|
} else {
|
|
if (prebuilt->blob_heap == nullptr) {
|
|
prebuilt->blob_heap = mem_heap_create(UNIV_PAGE_SIZE);
|
|
}
|
|
heap = prebuilt->blob_heap;
|
|
}
|
|
} else {
|
|
heap = mem_heap_create(UNIV_PAGE_SIZE);
|
|
}
|
|
|
|
/* NOTE: if we are retrieving a big BLOB, we may
|
|
already run out of memory in the next call, which
|
|
causes an assert */
|
|
|
|
dict_index_t *clust_index = prebuilt->table->first_index();
|
|
|
|
const page_size_t page_size = dict_table_page_size(prebuilt->table);
|
|
|
|
size_t lob_version = 0;
|
|
|
|
data = lob::btr_rec_copy_externally_stored_field(
|
|
prebuilt->trx, clust_index, rec, offsets, page_size, field_no, &len,
|
|
&lob_version, dict_index_is_sdi(index), heap);
|
|
|
|
if (data == nullptr) {
|
|
/* The externally stored field was not written
|
|
yet. This record should only be seen by
|
|
trx_rollback_or_clean_all_recovered() or any
|
|
yet. This can happen after optimization which
|
|
was done after for Bug#23481444 where we read
|
|
last record in the page to find the end range
|
|
scan. If we encounter this we just return false
|
|
In any other case this row should be only seen
|
|
by recv_recovery_rollback_active() or any
|
|
TRX_ISO_READ_UNCOMMITTED transactions. */
|
|
|
|
if (heap != blob_heap && heap != prebuilt->blob_heap) {
|
|
mem_heap_free(heap);
|
|
}
|
|
|
|
ut_a((!prebuilt->idx_cond &&
|
|
prebuilt->m_mysql_handler->end_range != nullptr) ||
|
|
(prebuilt->trx->isolation_level == TRX_ISO_READ_UNCOMMITTED));
|
|
return false;
|
|
}
|
|
|
|
if (lob_undo != nullptr) {
|
|
ulint local_len;
|
|
const byte *field_data =
|
|
rec_get_nth_field_instant(rec, offsets, field_no, index, &local_len);
|
|
const byte *field_ref =
|
|
field_data + local_len - BTR_EXTERN_FIELD_REF_SIZE;
|
|
|
|
lob::ref_t ref(const_cast<byte *>(field_ref));
|
|
lob_undo->apply(clust_index, field_no, const_cast<byte *>(data), len,
|
|
lob_version, ref.page_no());
|
|
}
|
|
|
|
ut_a(rec_field_not_null_not_add_col_def(len));
|
|
|
|
row_sel_field_store_in_mysql_format(mysql_rec + templ->mysql_col_offset,
|
|
templ, index, field_no, data, len,
|
|
ULINT_UNDEFINED);
|
|
|
|
if (heap != blob_heap && heap != prebuilt->blob_heap) {
|
|
mem_heap_free(heap);
|
|
}
|
|
} else {
|
|
/* Field is stored in the row. */
|
|
|
|
data = rec_get_nth_field_instant(rec, offsets, field_no, index, &len);
|
|
|
|
if (len == UNIV_SQL_NULL) {
|
|
/* MySQL assumes that the field for an SQL
|
|
NULL value is set to the default value. */
|
|
ut_ad(templ->mysql_null_bit_mask);
|
|
|
|
UNIV_MEM_ASSERT_RW(prebuilt->default_rec + templ->mysql_col_offset,
|
|
templ->mysql_col_len);
|
|
mysql_rec[templ->mysql_null_byte_offset] |=
|
|
(byte)templ->mysql_null_bit_mask;
|
|
memcpy(mysql_rec + templ->mysql_col_offset,
|
|
(const byte *)prebuilt->default_rec + templ->mysql_col_offset,
|
|
templ->mysql_col_len);
|
|
return true;
|
|
}
|
|
|
|
if (DATA_LARGE_MTYPE(templ->type) || DATA_GEOMETRY_MTYPE(templ->type)) {
|
|
/* It is a BLOB field locally stored in the
|
|
InnoDB record: we MUST copy its contents to
|
|
prebuilt->blob_heap here because
|
|
row_sel_field_store_in_mysql_format() stores a
|
|
pointer to the data, and the data passed to us
|
|
will be invalid as soon as the
|
|
mini-transaction is committed and the page
|
|
latch on the clustered index page is
|
|
released.
|
|
For DATA_POINT, it's stored like CHAR in InnoDB,
|
|
but it should be a BLOB field in MySQL layer. So we
|
|
still treated it as BLOB here. */
|
|
|
|
mem_heap_t *heap{};
|
|
|
|
if (blob_heap != nullptr) {
|
|
heap = blob_heap;
|
|
} else {
|
|
if (prebuilt->blob_heap == nullptr) {
|
|
prebuilt->blob_heap = mem_heap_create(UNIV_PAGE_SIZE);
|
|
}
|
|
heap = prebuilt->blob_heap;
|
|
}
|
|
data = static_cast<byte *>(mem_heap_dup(heap, data, len));
|
|
}
|
|
|
|
/* Reassign the clustered index field no. */
|
|
if (clust_templ_for_sec) {
|
|
field_no = clust_field_no;
|
|
}
|
|
|
|
row_sel_field_store_in_mysql_format(mysql_rec + templ->mysql_col_offset,
|
|
templ, index, field_no, data, len,
|
|
sec_field_no);
|
|
}
|
|
|
|
ut_ad(rec_field_not_null_not_add_col_def(len));
|
|
|
|
if (templ->mysql_null_bit_mask) {
|
|
/* It is a nullable column with a non-NULL value */
|
|
mysql_rec[templ->mysql_null_byte_offset] &=
|
|
~(byte)templ->mysql_null_bit_mask;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool row_sel_store_mysql_rec(byte *mysql_rec, row_prebuilt_t *prebuilt,
|
|
const rec_t *rec, const dtuple_t *vrow,
|
|
bool rec_clust, const dict_index_t *index,
|
|
const ulint *offsets, bool clust_templ_for_sec,
|
|
lob::undo_vers_t *lob_undo,
|
|
mem_heap_t *blob_heap) {
|
|
std::vector<const dict_col_t *> template_col;
|
|
|
|
DBUG_TRACE;
|
|
|
|
ut_ad(rec_clust || index == prebuilt->index);
|
|
ut_ad(!rec_clust || index->is_clustered());
|
|
|
|
if (blob_heap != nullptr) {
|
|
mem_heap_empty(blob_heap);
|
|
} else if (prebuilt->blob_heap != nullptr) {
|
|
mem_heap_empty(prebuilt->blob_heap);
|
|
}
|
|
|
|
if (clust_templ_for_sec) {
|
|
/* Store all clustered index column of secondary index record. */
|
|
for (ulint i = 0; i < dict_index_get_n_fields(prebuilt->index); i++) {
|
|
auto sec_field = dict_index_get_nth_field_pos(index, prebuilt->index, i);
|
|
|
|
if (sec_field == ULINT_UNDEFINED) {
|
|
template_col.push_back(nullptr);
|
|
continue;
|
|
}
|
|
|
|
const auto field = index->get_field(sec_field);
|
|
const auto col = field->col;
|
|
template_col.push_back(col);
|
|
}
|
|
}
|
|
|
|
for (ulint i = 0; i < prebuilt->n_template; i++) {
|
|
const auto templ = &prebuilt->mysql_template[i];
|
|
|
|
if (templ->is_virtual && index->is_clustered()) {
|
|
/* Skip virtual columns if it is not a covered
|
|
search or virtual key read is not requested. */
|
|
if ((prebuilt->index != nullptr &&
|
|
!dict_index_has_virtual(prebuilt->index)) ||
|
|
(!prebuilt->read_just_key && !prebuilt->m_read_virtual_key) ||
|
|
!rec_clust) {
|
|
continue;
|
|
}
|
|
|
|
dict_v_col_t *col;
|
|
col = dict_table_get_nth_v_col(index->table, templ->clust_rec_field_no);
|
|
|
|
ut_ad(vrow);
|
|
|
|
const auto dfield = dtuple_get_nth_v_field(vrow, col->v_pos);
|
|
|
|
/* If this is a partitioned table, it might request
|
|
InnoDB to fill out virtual column data for serach
|
|
index key values while other non key columns are also
|
|
getting selected. The non-key virtual columns may
|
|
not be materialized and we should skip them. */
|
|
if (dfield_get_type(dfield)->mtype == DATA_MISSING) {
|
|
ut_ad(prebuilt->m_read_virtual_key);
|
|
|
|
/* If it is part of index key the data should
|
|
have been materialized. */
|
|
ut_ad(prebuilt->index->get_col_pos(col->v_pos, false, true) ==
|
|
ULINT_UNDEFINED);
|
|
|
|
continue;
|
|
}
|
|
|
|
if (dfield->len == UNIV_SQL_NULL) {
|
|
mysql_rec[templ->mysql_null_byte_offset] |=
|
|
(byte)templ->mysql_null_bit_mask;
|
|
memcpy(mysql_rec + templ->mysql_col_offset,
|
|
(const byte *)prebuilt->default_rec + templ->mysql_col_offset,
|
|
templ->mysql_col_len);
|
|
} else {
|
|
row_sel_field_store_in_mysql_format(
|
|
mysql_rec + templ->mysql_col_offset, templ, index,
|
|
templ->clust_rec_field_no, (const byte *)dfield->data, dfield->len,
|
|
ULINT_UNDEFINED);
|
|
if (templ->mysql_null_bit_mask) {
|
|
mysql_rec[templ->mysql_null_byte_offset] &=
|
|
~(byte)templ->mysql_null_bit_mask;
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
ulint field_no =
|
|
rec_clust ? templ->clust_rec_field_no : templ->rec_field_no;
|
|
|
|
ulint sec_field_no = ULINT_UNDEFINED;
|
|
|
|
/* We should never deliver column prefixes to MySQL,
|
|
except for evaluating innobase_index_cond() or
|
|
row_search_end_range_check(). */
|
|
ut_ad(index->get_field(field_no)->prefix_len == 0);
|
|
|
|
if (clust_templ_for_sec) {
|
|
std::vector<const dict_col_t *>::iterator it;
|
|
const dict_field_t *field = index->get_field(field_no);
|
|
const dict_col_t *col = field->col;
|
|
|
|
it = std::find(template_col.begin(), template_col.end(), col);
|
|
|
|
if (it == template_col.end()) {
|
|
continue;
|
|
}
|
|
|
|
ut_ad(templ->rec_field_no == templ->clust_rec_field_no);
|
|
|
|
sec_field_no = it - template_col.begin();
|
|
}
|
|
|
|
if (!row_sel_store_mysql_field(mysql_rec, prebuilt, rec, index, offsets,
|
|
field_no, templ, sec_field_no, lob_undo,
|
|
blob_heap)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* FIXME: We only need to read the doc_id if an FTS indexed
|
|
column is being updated.
|
|
NOTE, the record can be cluster or secondary index record.
|
|
if secondary index is used then FTS_DOC_ID column should be part
|
|
of this index. */
|
|
if (dict_table_has_fts_index(prebuilt->table)) {
|
|
if ((index->is_clustered() && !clust_templ_for_sec) ||
|
|
prebuilt->fts_doc_id_in_read_set) {
|
|
prebuilt->fts_doc_id =
|
|
fts_get_doc_id_from_rec(prebuilt->table, rec, index, NULL);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/** Builds a previous version of a clustered index record for a consistent read
|
|
@param[in] read_view read view
|
|
@param[in] clust_index clustered index
|
|
@param[in] prebuilt prebuilt struct
|
|
@param[in] rec record in clustered index
|
|
@param[in,out] offsets offsets returned by
|
|
rec_get_offsets(rec, clust_index)
|
|
@param[in,out] offset_heap memory heap from which the offsets are
|
|
allocated
|
|
@param[out] old_vers old version, or NULL if the record does not
|
|
exist in the view: i.e., it was freshly
|
|
inserted afterwards
|
|
@param[out] vrow dtuple to hold old virtual column data
|
|
@param[in] mtr the mini transaction context.
|
|
@param[in,out] lob_undo Undo information for BLOBs.
|
|
@return DB_SUCCESS or error code */
|
|
static MY_ATTRIBUTE((warn_unused_result)) dberr_t
|
|
row_sel_build_prev_vers_for_mysql(lizard::Vision *vision,
|
|
dict_index_t *clust_index,
|
|
row_prebuilt_t *prebuilt,
|
|
const rec_t *rec, ulint **offsets,
|
|
mem_heap_t **offset_heap,
|
|
rec_t **old_vers, const dtuple_t **vrow,
|
|
mtr_t *mtr, lob::undo_vers_t *lob_undo) {
|
|
DBUG_TRACE;
|
|
|
|
dberr_t err;
|
|
|
|
if (prebuilt->old_vers_heap) {
|
|
mem_heap_empty(prebuilt->old_vers_heap);
|
|
} else {
|
|
prebuilt->old_vers_heap = mem_heap_create(200);
|
|
}
|
|
|
|
err = row_vers_build_for_consistent_read(
|
|
rec, mtr, clust_index, offsets, vision, offset_heap,
|
|
prebuilt->old_vers_heap, old_vers, vrow, lob_undo);
|
|
|
|
return err;
|
|
}
|
|
|
|
/** Helper class to cache clust_rec and old_ver */
|
|
class Row_sel_get_clust_rec_for_mysql {
|
|
const rec_t *cached_clust_rec;
|
|
rec_t *cached_old_vers;
|
|
|
|
public:
|
|
/** Constructor */
|
|
Row_sel_get_clust_rec_for_mysql()
|
|
: cached_clust_rec(nullptr), cached_old_vers(nullptr) {}
|
|
|
|
/** Retrieve the clustered index record corresponding to a record in a
|
|
non-clustered index. Does the necessary locking.
|
|
@param[in] prebuilt prebuilt struct in the handle
|
|
@param[in] sec_index secondary index where rec resides
|
|
@param[in] rec record in a non-clustered index
|
|
@param[in] thr query thread
|
|
@param[out] out_rec clustered record or an old version of it,
|
|
NULL if the old version did not exist in the
|
|
read view, i.e., it was a fresh inserted version
|
|
@param[in,out] offsets in: offsets returned by
|
|
rec_get_offsets(rec, sec_index);
|
|
out: offsets returned by
|
|
rec_get_offsets(out_rec, clust_index)
|
|
@param[in,out] offset_heap memory heap from which the offsets are allocated
|
|
@param[out] vrow virtual column to fill
|
|
@param[in] mtr mtr used to get access to the non-clustered record;
|
|
the same mtr is used to access the clustered index
|
|
@param[in] lob_undo the LOB undo information.
|
|
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */
|
|
dberr_t operator()(row_prebuilt_t *prebuilt, dict_index_t *sec_index,
|
|
const rec_t *rec, que_thr_t *thr, const rec_t **out_rec,
|
|
ulint **offsets, mem_heap_t **offset_heap,
|
|
const dtuple_t **vrow, mtr_t *mtr,
|
|
lob::undo_vers_t *lob_undo);
|
|
};
|
|
|
|
/** Retrieve the clustered index record corresponding to a record in a
|
|
non-clustered index. Does the necessary locking.
|
|
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */
|
|
MY_ATTRIBUTE((warn_unused_result))
|
|
dberr_t Row_sel_get_clust_rec_for_mysql::operator()(
|
|
row_prebuilt_t *prebuilt, dict_index_t *sec_index, const rec_t *rec,
|
|
que_thr_t *thr, const rec_t **out_rec, ulint **offsets,
|
|
mem_heap_t **offset_heap, const dtuple_t **vrow, mtr_t *mtr,
|
|
lob::undo_vers_t *lob_undo) {
|
|
DBUG_TRACE;
|
|
|
|
dict_index_t *clust_index;
|
|
const rec_t *clust_rec;
|
|
rec_t *old_vers;
|
|
dberr_t err;
|
|
trx_t *trx;
|
|
|
|
*out_rec = NULL;
|
|
trx = thr_get_trx(thr);
|
|
|
|
row_build_row_ref_in_tuple(prebuilt->clust_ref, rec, sec_index, *offsets,
|
|
trx);
|
|
|
|
clust_index = sec_index->table->first_index();
|
|
|
|
btr_pcur_open_with_no_init(clust_index, prebuilt->clust_ref, PAGE_CUR_LE,
|
|
BTR_SEARCH_LEAF, prebuilt->clust_pcur, 0, mtr);
|
|
|
|
clust_rec = btr_pcur_get_rec(prebuilt->clust_pcur);
|
|
|
|
prebuilt->clust_pcur->m_trx_if_known = trx;
|
|
|
|
/* Note: only if the search ends up on a non-infimum record is the
|
|
low_match value the real match to the search tuple */
|
|
|
|
if (!page_rec_is_user_rec(clust_rec) ||
|
|
btr_pcur_get_low_match(prebuilt->clust_pcur) <
|
|
dict_index_get_n_unique(clust_index)) {
|
|
btr_cur_t *btr_cur = btr_pcur_get_btr_cur(prebuilt->pcur);
|
|
|
|
/* If this is a spatial index scan, and we are reading
|
|
from a shadow buffer, the record could be already
|
|
deleted (due to rollback etc.). So get the original
|
|
page and verify that */
|
|
if (dict_index_is_spatial(sec_index) && btr_cur->rtr_info->matches &&
|
|
(page_align(rec) == btr_cur->rtr_info->matches->block.frame ||
|
|
rec != btr_pcur_get_rec(prebuilt->pcur))) {
|
|
#ifdef UNIV_DEBUG
|
|
rtr_info_t *rtr_info = btr_cur->rtr_info;
|
|
mutex_enter(&rtr_info->matches->rtr_match_mutex);
|
|
/* The page could be deallocated (by rollback etc.) */
|
|
if (!rtr_info->matches->valid) {
|
|
mutex_exit(&rtr_info->matches->rtr_match_mutex);
|
|
clust_rec = NULL;
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
}
|
|
mutex_exit(&rtr_info->matches->rtr_match_mutex);
|
|
|
|
if (rec_get_deleted_flag(rec, dict_table_is_comp(sec_index->table)) &&
|
|
prebuilt->select_lock_type == LOCK_NONE) {
|
|
clust_rec = NULL;
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
}
|
|
|
|
if (rec != btr_pcur_get_rec(prebuilt->pcur)) {
|
|
clust_rec = NULL;
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
}
|
|
|
|
page_no_t page_no = page_get_page_no(btr_pcur_get_page(prebuilt->pcur));
|
|
|
|
page_id_t page_id(dict_index_get_space(sec_index), page_no);
|
|
|
|
buf_block_t *block = buf_page_get_gen(
|
|
page_id, dict_table_page_size(sec_index->table), RW_NO_LATCH, NULL,
|
|
Page_fetch::NORMAL, __FILE__, __LINE__, mtr);
|
|
|
|
mem_heap_t *heap = mem_heap_create(256);
|
|
dtuple_t *tuple =
|
|
dict_index_build_data_tuple(sec_index, const_cast<rec_t *>(rec),
|
|
dict_index_get_n_fields(sec_index), heap);
|
|
;
|
|
page_cur_t page_cursor;
|
|
|
|
ulint low_match =
|
|
page_cur_search(block, sec_index, tuple, PAGE_CUR_LE, &page_cursor);
|
|
|
|
ut_ad(low_match < dtuple_get_n_fields_cmp(tuple));
|
|
mem_heap_free(heap);
|
|
clust_rec = NULL;
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
#endif /* UNIV_DEBUG */
|
|
} else if (!rec_get_deleted_flag(rec,
|
|
dict_table_is_comp(sec_index->table)) ||
|
|
prebuilt->select_lock_type != LOCK_NONE) {
|
|
/* In a rare case it is possible that no clust
|
|
rec is found for a delete-marked secondary index
|
|
record: if in row0umod.cc in
|
|
row_undo_mod_remove_clust_low() we have already removed
|
|
the clust rec, while purge is still cleaning and
|
|
removing secondary index records associated with
|
|
earlier versions of the clustered index record.
|
|
In that case we know that the clustered index
|
|
record did not exist in the read view of trx. */
|
|
ib::error(ER_IB_MSG_1030)
|
|
<< "Clustered record for sec rec not found"
|
|
" index "
|
|
<< sec_index->name << " of table " << sec_index->table->name;
|
|
|
|
fputs("InnoDB: sec index record ", stderr);
|
|
rec_print(stderr, rec, sec_index);
|
|
fputs(
|
|
"\n"
|
|
"InnoDB: clust index record ",
|
|
stderr);
|
|
rec_print(stderr, clust_rec, clust_index);
|
|
putc('\n', stderr);
|
|
trx_print(stderr, trx, 600);
|
|
fputs(
|
|
"\n"
|
|
"InnoDB: Submit a detailed bug report"
|
|
" to http://bugs.mysql.com\n",
|
|
stderr);
|
|
ut_ad(0);
|
|
}
|
|
|
|
clust_rec = NULL;
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
}
|
|
|
|
*offsets = rec_get_offsets(clust_rec, clust_index, *offsets, ULINT_UNDEFINED,
|
|
offset_heap);
|
|
|
|
if (prebuilt->select_lock_type != LOCK_NONE) {
|
|
/* Try to place a lock on the index record; we are searching
|
|
the clust rec with a unique condition, hence
|
|
we set a LOCK_REC_NOT_GAP type lock */
|
|
|
|
err = lock_clust_rec_read_check_and_lock(
|
|
lock_duration_t::REGULAR, btr_pcur_get_block(prebuilt->clust_pcur),
|
|
clust_rec, clust_index, *offsets, prebuilt->select_mode,
|
|
static_cast<lock_mode>(prebuilt->select_lock_type), LOCK_REC_NOT_GAP,
|
|
thr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS:
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
break;
|
|
default:
|
|
goto err_exit;
|
|
}
|
|
} else {
|
|
/* This is a non-locking consistent read: if necessary, fetch
|
|
a previous version of the record */
|
|
|
|
old_vers = NULL;
|
|
|
|
/* If the isolation level allows reading of uncommitted data,
|
|
then we never look for an earlier version */
|
|
|
|
if (trx_get_vision(trx)->is_asof_gcn()) {
|
|
dberr_t gp_error = DB_SUCCESS;
|
|
bool see = lizard::gp_clust_rec_cons_read_sees(
|
|
trx, clust_rec, clust_index, *offsets, prebuilt->clust_pcur,
|
|
trx_get_vision(trx), &gp_error);
|
|
if (gp_error != DB_SUCCESS) {
|
|
err = gp_error;
|
|
goto err_exit;
|
|
} else {
|
|
if (!see) {
|
|
if (clust_rec != cached_clust_rec) {
|
|
/* The following call returns 'offsets' associated with 'old_vers'
|
|
*/
|
|
err = row_sel_build_prev_vers_for_mysql(
|
|
&trx->vision, clust_index, prebuilt, clust_rec, offsets,
|
|
offset_heap, &old_vers, vrow, mtr, lob_undo);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
goto err_exit;
|
|
}
|
|
cached_clust_rec = clust_rec;
|
|
cached_old_vers = old_vers;
|
|
} else {
|
|
err = DB_SUCCESS;
|
|
old_vers = cached_old_vers;
|
|
|
|
if (old_vers != nullptr) {
|
|
DBUG_EXECUTE_IF("innodb_cached_old_vers_offsets", {
|
|
rec_offs_make_valid(old_vers, clust_index, *offsets);
|
|
if (!lob::rec_check_lobref_space_id(clust_index, old_vers,
|
|
*offsets)) {
|
|
DBUG_SUICIDE();
|
|
}
|
|
});
|
|
|
|
/* The offsets need not be same for the latest version of
|
|
clust_rec and its old version old_vers. Re-calculate the offsets
|
|
for old_vers. */
|
|
*offsets = rec_get_offsets(old_vers, clust_index, *offsets,
|
|
ULINT_UNDEFINED, offset_heap);
|
|
ut_ad(lob::rec_check_lobref_space_id(clust_index, old_vers,
|
|
*offsets));
|
|
}
|
|
}
|
|
|
|
if (old_vers == NULL) {
|
|
goto err_exit;
|
|
}
|
|
|
|
clust_rec = old_vers;
|
|
}
|
|
}
|
|
|
|
} else if (trx->isolation_level > TRX_ISO_READ_UNCOMMITTED &&
|
|
!lock_clust_rec_cons_read_sees(clust_rec, clust_index, *offsets,
|
|
prebuilt->clust_pcur,
|
|
trx_get_vision(trx))) {
|
|
if (clust_rec != cached_clust_rec) {
|
|
/* The following call returns 'offsets' associated with 'old_vers' */
|
|
err = row_sel_build_prev_vers_for_mysql(
|
|
&trx->vision, clust_index, prebuilt, clust_rec, offsets,
|
|
offset_heap, &old_vers, vrow, mtr, lob_undo);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
goto err_exit;
|
|
}
|
|
cached_clust_rec = clust_rec;
|
|
cached_old_vers = old_vers;
|
|
} else {
|
|
err = DB_SUCCESS;
|
|
old_vers = cached_old_vers;
|
|
|
|
if (old_vers != nullptr) {
|
|
DBUG_EXECUTE_IF("innodb_cached_old_vers_offsets", {
|
|
rec_offs_make_valid(old_vers, clust_index, *offsets);
|
|
if (!lob::rec_check_lobref_space_id(clust_index, old_vers,
|
|
*offsets)) {
|
|
DBUG_SUICIDE();
|
|
}
|
|
});
|
|
|
|
/* The offsets need not be same for the latest version of
|
|
clust_rec and its old version old_vers. Re-calculate the offsets
|
|
for old_vers. */
|
|
*offsets = rec_get_offsets(old_vers, clust_index, *offsets,
|
|
ULINT_UNDEFINED, offset_heap);
|
|
ut_ad(
|
|
lob::rec_check_lobref_space_id(clust_index, old_vers, *offsets));
|
|
}
|
|
}
|
|
|
|
if (old_vers == NULL) {
|
|
goto err_exit;
|
|
}
|
|
|
|
clust_rec = old_vers;
|
|
}
|
|
|
|
/* If we had to go to an earlier version of row or the
|
|
secondary index record is delete marked, then it may be that
|
|
the secondary index record corresponding to clust_rec
|
|
(or old_vers) is not rec; in that case we must ignore
|
|
such row because in our snapshot rec would not have existed.
|
|
Remember that from rec we cannot see directly which transaction
|
|
id corresponds to it: we have to go to the clustered index
|
|
record. A query where we want to fetch all rows where
|
|
the secondary index value is in some interval would return
|
|
a wrong result if we would not drop rows which we come to
|
|
visit through secondary index records that would not really
|
|
exist in our snapshot. */
|
|
|
|
/* And for spatial index, since the rec is from shadow buffer,
|
|
so we need to check if it's exactly match the clust_rec. */
|
|
if (clust_rec &&
|
|
(old_vers || trx->isolation_level <= TRX_ISO_READ_UNCOMMITTED ||
|
|
dict_index_is_spatial(sec_index) ||
|
|
rec_get_deleted_flag(rec, dict_table_is_comp(sec_index->table)))) {
|
|
bool rec_equal;
|
|
|
|
err = row_sel_sec_rec_is_for_clust_rec(rec, sec_index, clust_rec,
|
|
clust_index, thr, rec_equal);
|
|
if (err != DB_SUCCESS) {
|
|
goto err_exit;
|
|
} else if (!rec_equal) {
|
|
clust_rec = NULL;
|
|
}
|
|
}
|
|
|
|
err = DB_SUCCESS;
|
|
}
|
|
|
|
func_exit:
|
|
*out_rec = clust_rec;
|
|
|
|
/* Store the current position if select_lock_type is not
|
|
LOCK_NONE or if we are scanning using InnoDB APIs */
|
|
if (prebuilt->select_lock_type != LOCK_NONE || prebuilt->innodb_api) {
|
|
/* We may use the cursor in update or in unlock_row():
|
|
store its position */
|
|
|
|
btr_pcur_store_position(prebuilt->clust_pcur, mtr);
|
|
}
|
|
|
|
err_exit:
|
|
return err;
|
|
}
|
|
|
|
/** Restores cursor position after it has been stored. We have to take into
|
|
account that the record cursor was positioned on may have been deleted.
|
|
Then we may have to move the cursor one step up or down.
|
|
@return true if we may need to process the record the cursor is now
|
|
positioned on (i.e. we should not go to the next record yet) */
|
|
static ibool sel_restore_position_for_mysql(
|
|
ibool *same_user_rec, /*!< out: TRUE if we were able to restore
|
|
the cursor on a user record with the
|
|
same ordering prefix in in the
|
|
B-tree index */
|
|
ulint latch_mode, /*!< in: latch mode wished in
|
|
restoration */
|
|
btr_pcur_t *pcur, /*!< in: cursor whose position
|
|
has been stored */
|
|
row_prebuilt_t *prebuilt, /*< in: for sampling */
|
|
ibool moves_up, /*!< in: TRUE if the cursor moves up
|
|
in the index */
|
|
mtr_t *mtr) /*!< in: mtr; CAUTION: may commit
|
|
mtr temporarily! */
|
|
{
|
|
ibool success;
|
|
|
|
ut_ad(!prebuilt || prebuilt->pcur == pcur);
|
|
|
|
if (prebuilt && prebuilt->sample->enabled)
|
|
success = btr_sample_pcur_restore(prebuilt->sample, mtr);
|
|
else
|
|
success = btr_pcur_restore_position(latch_mode, pcur, mtr);
|
|
|
|
*same_user_rec = success;
|
|
|
|
ut_ad(!success || pcur->m_rel_pos == BTR_PCUR_ON);
|
|
#ifdef UNIV_DEBUG
|
|
if (pcur->m_pos_state == BTR_PCUR_IS_POSITIONED_OPTIMISTIC) {
|
|
ut_ad(pcur->m_rel_pos == BTR_PCUR_BEFORE ||
|
|
pcur->m_rel_pos == BTR_PCUR_AFTER);
|
|
} else {
|
|
ut_ad(pcur->m_pos_state == BTR_PCUR_IS_POSITIONED);
|
|
ut_ad((pcur->m_rel_pos == BTR_PCUR_ON) == btr_pcur_is_on_user_rec(pcur));
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/* The position may need be adjusted for rel_pos and moves_up. */
|
|
|
|
switch (pcur->m_rel_pos) {
|
|
case BTR_PCUR_UNSET:
|
|
ut_ad(0);
|
|
return (TRUE);
|
|
case BTR_PCUR_ON:
|
|
if (!success && moves_up) {
|
|
next:
|
|
btr_pcur_move_to_next(pcur, mtr);
|
|
return (TRUE);
|
|
}
|
|
return (!success);
|
|
case BTR_PCUR_AFTER_LAST_IN_TREE:
|
|
case BTR_PCUR_BEFORE_FIRST_IN_TREE:
|
|
return (TRUE);
|
|
case BTR_PCUR_AFTER:
|
|
/* positioned to record after pcur->old_rec. */
|
|
pcur->m_pos_state = BTR_PCUR_IS_POSITIONED;
|
|
prev:
|
|
if (btr_pcur_is_on_user_rec(pcur) && !moves_up) {
|
|
btr_pcur_move_to_prev(pcur, mtr);
|
|
}
|
|
return (TRUE);
|
|
case BTR_PCUR_BEFORE:
|
|
/* For non optimistic restoration:
|
|
The position is now set to the record before pcur->old_rec.
|
|
|
|
For optimistic restoration:
|
|
The position also needs to take the previous search_mode into
|
|
consideration. */
|
|
|
|
switch (pcur->m_pos_state) {
|
|
case BTR_PCUR_IS_POSITIONED_OPTIMISTIC:
|
|
pcur->m_pos_state = BTR_PCUR_IS_POSITIONED;
|
|
if (pcur->m_search_mode == PAGE_CUR_GE) {
|
|
/* Positioned during Greater or Equal search
|
|
with BTR_PCUR_BEFORE. Optimistic restore to
|
|
the same record. If scanning for lower then
|
|
we must move to previous record.
|
|
This can happen with:
|
|
HANDLER READ idx a = (const);
|
|
HANDLER READ idx PREV; */
|
|
goto prev;
|
|
}
|
|
return (TRUE);
|
|
case BTR_PCUR_IS_POSITIONED:
|
|
if (moves_up && btr_pcur_is_on_user_rec(pcur)) {
|
|
goto next;
|
|
}
|
|
return (TRUE);
|
|
case BTR_PCUR_WAS_POSITIONED:
|
|
case BTR_PCUR_NOT_POSITIONED:
|
|
break;
|
|
}
|
|
}
|
|
ut_ad(0);
|
|
return (TRUE);
|
|
}
|
|
|
|
/** Copies a cached field for MySQL from the fetch cache. */
|
|
static void row_sel_copy_cached_field_for_mysql(
|
|
byte *buf, /*!< in/out: row buffer */
|
|
const byte *cache, /*!< in: cached row */
|
|
const mysql_row_templ_t *templ) /*!< in: column template */
|
|
{
|
|
ulint len;
|
|
|
|
buf += templ->mysql_col_offset;
|
|
cache += templ->mysql_col_offset;
|
|
|
|
UNIV_MEM_ASSERT_W(buf, templ->mysql_col_len);
|
|
|
|
if (templ->mysql_type == DATA_MYSQL_TRUE_VARCHAR &&
|
|
(templ->type != DATA_INT)) {
|
|
/* Check for != DATA_INT to make sure we do
|
|
not treat MySQL ENUM or SET as a true VARCHAR!
|
|
Find the actual length of the true VARCHAR field. */
|
|
row_mysql_read_true_varchar(&len, cache, templ->mysql_length_bytes);
|
|
len += templ->mysql_length_bytes;
|
|
UNIV_MEM_INVALID(buf, templ->mysql_col_len);
|
|
} else {
|
|
len = templ->mysql_col_len;
|
|
}
|
|
|
|
ut_memcpy(buf, cache, len);
|
|
}
|
|
|
|
/** Copy used fields from cached row.
|
|
Copy cache record field by field, don't touch fields that
|
|
are not covered by current key.
|
|
@param[out] buf Where to copy the MySQL row.
|
|
@param[in] cached_rec What to copy (in MySQL row format).
|
|
@param[in] prebuilt prebuilt struct. */
|
|
void row_sel_copy_cached_fields_for_mysql(byte *buf, const byte *cached_rec,
|
|
row_prebuilt_t *prebuilt) {
|
|
const mysql_row_templ_t *templ;
|
|
ulint i;
|
|
for (i = 0; i < prebuilt->n_template; i++) {
|
|
templ = prebuilt->mysql_template + i;
|
|
|
|
/* Skip virtual columns */
|
|
if (templ->is_virtual) {
|
|
continue;
|
|
}
|
|
|
|
row_sel_copy_cached_field_for_mysql(buf, cached_rec, templ);
|
|
/* Copy NULL bit of the current field from cached_rec
|
|
to buf */
|
|
if (templ->mysql_null_bit_mask) {
|
|
buf[templ->mysql_null_byte_offset] ^=
|
|
(buf[templ->mysql_null_byte_offset] ^
|
|
cached_rec[templ->mysql_null_byte_offset]) &
|
|
(byte)templ->mysql_null_bit_mask;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Get the record buffer provided by the server, if there is one.
|
|
@param prebuilt prebuilt struct
|
|
@return the record buffer, or nullptr if none was provided */
|
|
static Record_buffer *row_sel_get_record_buffer(
|
|
const row_prebuilt_t *prebuilt) {
|
|
if (prebuilt->m_mysql_handler == nullptr) {
|
|
return nullptr;
|
|
}
|
|
return prebuilt->m_mysql_handler->ha_get_record_buffer();
|
|
}
|
|
|
|
/** Pops a cached row for MySQL from the fetch cache. */
|
|
UNIV_INLINE
|
|
void row_sel_dequeue_cached_row_for_mysql(
|
|
byte *buf, /*!< in/out: buffer where to copy the
|
|
row */
|
|
row_prebuilt_t *prebuilt) /*!< in: prebuilt struct */
|
|
{
|
|
ulint i;
|
|
const mysql_row_templ_t *templ;
|
|
const byte *cached_rec;
|
|
ut_ad(prebuilt->n_fetch_cached > 0);
|
|
ut_ad(prebuilt->mysql_prefix_len <= prebuilt->mysql_row_len);
|
|
|
|
UNIV_MEM_ASSERT_W(buf, prebuilt->mysql_row_len);
|
|
|
|
/* The row is cached in the server-provided buffer, if there
|
|
is one. If not, get it from our own prefetch cache.*/
|
|
const auto record_buffer = row_sel_get_record_buffer(prebuilt);
|
|
cached_rec = record_buffer
|
|
? record_buffer->record(prebuilt->fetch_cache_first)
|
|
: prebuilt->fetch_cache[prebuilt->fetch_cache_first];
|
|
|
|
if (UNIV_UNLIKELY(prebuilt->keep_other_fields_on_keyread)) {
|
|
row_sel_copy_cached_fields_for_mysql(buf, cached_rec, prebuilt);
|
|
} else if (prebuilt->mysql_prefix_len > 63) {
|
|
/* The record is long. Copy it field by field, in case
|
|
there are some long VARCHAR column of which only a
|
|
small length is being used. */
|
|
UNIV_MEM_INVALID(buf, prebuilt->mysql_prefix_len);
|
|
|
|
/* First copy the NULL bits. */
|
|
ut_memcpy(buf, cached_rec, prebuilt->null_bitmap_len);
|
|
/* Then copy the requested fields. */
|
|
|
|
for (i = 0; i < prebuilt->n_template; i++) {
|
|
templ = prebuilt->mysql_template + i;
|
|
|
|
/* Skip virtual columns */
|
|
if (templ->is_virtual && !(dict_index_has_virtual(prebuilt->index) &&
|
|
prebuilt->read_just_key)) {
|
|
continue;
|
|
}
|
|
|
|
row_sel_copy_cached_field_for_mysql(buf, cached_rec, templ);
|
|
}
|
|
} else {
|
|
ut_memcpy(buf, cached_rec, prebuilt->mysql_prefix_len);
|
|
}
|
|
|
|
prebuilt->n_fetch_cached--;
|
|
prebuilt->fetch_cache_first++;
|
|
|
|
if (prebuilt->n_fetch_cached == 0) {
|
|
/* All the prefetched records have been returned.
|
|
Rewind so that we can insert records at the beginning
|
|
of the prefetch cache or record buffer. */
|
|
prebuilt->fetch_cache_first = 0;
|
|
if (record_buffer != nullptr) {
|
|
record_buffer->clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Initialise the prefetch cache. */
|
|
UNIV_INLINE
|
|
void row_sel_prefetch_cache_init(
|
|
row_prebuilt_t *prebuilt) /*!< in/out: prebuilt struct */
|
|
{
|
|
ulint i;
|
|
ulint sz;
|
|
byte *ptr;
|
|
|
|
/* We use our own prefetch cache only if the server didn't
|
|
provide one. */
|
|
ut_ad(row_sel_get_record_buffer(prebuilt) == nullptr);
|
|
|
|
/* Reserve space for the magic number. */
|
|
sz = UT_ARR_SIZE(prebuilt->fetch_cache) * (prebuilt->mysql_row_len + 8);
|
|
ptr = static_cast<byte *>(ut_malloc_nokey(sz));
|
|
|
|
for (i = 0; i < UT_ARR_SIZE(prebuilt->fetch_cache); i++) {
|
|
/* A user has reported memory corruption in these
|
|
buffers in Linux. Put magic numbers there to help
|
|
to track a possible bug. */
|
|
|
|
mach_write_to_4(ptr, ROW_PREBUILT_FETCH_MAGIC_N);
|
|
ptr += 4;
|
|
|
|
prebuilt->fetch_cache[i] = ptr;
|
|
ptr += prebuilt->mysql_row_len;
|
|
|
|
mach_write_to_4(ptr, ROW_PREBUILT_FETCH_MAGIC_N);
|
|
ptr += 4;
|
|
}
|
|
}
|
|
|
|
/** Get the last fetch cache buffer from the queue.
|
|
@return pointer to buffer. */
|
|
UNIV_INLINE
|
|
byte *row_sel_fetch_last_buf(
|
|
row_prebuilt_t *prebuilt) /*!< in/out: prebuilt struct */
|
|
{
|
|
const auto record_buffer = row_sel_get_record_buffer(prebuilt);
|
|
|
|
ut_ad(!prebuilt->templ_contains_blob);
|
|
if (record_buffer == nullptr) {
|
|
ut_ad(prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE);
|
|
} else {
|
|
ut_ad(prebuilt->mysql_prefix_len <= record_buffer->record_size());
|
|
ut_ad(record_buffer->records() == prebuilt->n_fetch_cached);
|
|
}
|
|
|
|
if (record_buffer == nullptr && prebuilt->fetch_cache[0] == nullptr) {
|
|
/* Allocate memory for the fetch cache */
|
|
ut_ad(prebuilt->n_fetch_cached == 0);
|
|
|
|
row_sel_prefetch_cache_init(prebuilt);
|
|
}
|
|
|
|
/* Use the server-provided buffer if there is one. Otherwise,
|
|
use our own prefetch buffer. */
|
|
byte *buf = record_buffer ? record_buffer->add_record()
|
|
: prebuilt->fetch_cache[prebuilt->n_fetch_cached];
|
|
|
|
ut_ad(prebuilt->fetch_cache_first == 0);
|
|
UNIV_MEM_INVALID(buf, record_buffer ? record_buffer->record_size()
|
|
: prebuilt->mysql_row_len);
|
|
|
|
return (buf);
|
|
}
|
|
|
|
/** Pushes a row for MySQL to the fetch cache. */
|
|
UNIV_INLINE
|
|
void row_sel_enqueue_cache_row_for_mysql(
|
|
byte *mysql_rec, /*!< in/out: MySQL record */
|
|
row_prebuilt_t *prebuilt) /*!< in/out: prebuilt struct */
|
|
{
|
|
/* For non ICP code path the row should already exist in the
|
|
next fetch cache slot. */
|
|
|
|
if (prebuilt->idx_cond) {
|
|
byte *dest = row_sel_fetch_last_buf(prebuilt);
|
|
|
|
ut_memcpy(dest, mysql_rec, prebuilt->mysql_prefix_len);
|
|
}
|
|
|
|
++prebuilt->n_fetch_cached;
|
|
}
|
|
|
|
/** Tries to do a shortcut to fetch a clustered index record with a unique key,
|
|
using the hash index if possible (not always). We assume that the search
|
|
mode is PAGE_CUR_GE, it is a consistent read, there is a read view in trx,
|
|
btr search latch has been locked in S-mode if AHI is enabled.
|
|
@return SEL_FOUND, SEL_EXHAUSTED, SEL_RETRY */
|
|
static ulint row_sel_try_search_shortcut_for_mysql(
|
|
const rec_t **out_rec, /*!< out: record if found */
|
|
row_prebuilt_t *prebuilt, /*!< in: prebuilt struct */
|
|
ulint **offsets, /*!< in/out: for rec_get_offsets(*out_rec) */
|
|
mem_heap_t **heap, /*!< in/out: heap for rec_get_offsets() */
|
|
mtr_t *mtr) /*!< in: started mtr */
|
|
{
|
|
dict_index_t *index = prebuilt->index;
|
|
const dtuple_t *search_tuple = prebuilt->search_tuple;
|
|
btr_pcur_t *pcur = prebuilt->pcur;
|
|
trx_t *trx = prebuilt->trx;
|
|
const rec_t *rec;
|
|
|
|
ut_ad(index->is_clustered());
|
|
ut_ad(!prebuilt->templ_contains_blob);
|
|
|
|
btr_pcur_open_with_no_init(index, search_tuple, PAGE_CUR_GE, BTR_SEARCH_LEAF,
|
|
pcur, (trx->has_search_latch) ? RW_S_LATCH : 0,
|
|
mtr);
|
|
rec = btr_pcur_get_rec(pcur);
|
|
|
|
if (!page_rec_is_user_rec(rec)) {
|
|
return (SEL_RETRY);
|
|
}
|
|
|
|
/* As the cursor is now placed on a user record after a search with
|
|
the mode PAGE_CUR_GE, the up_match field in the cursor tells how many
|
|
fields in the user record matched to the search tuple */
|
|
|
|
if (btr_pcur_get_up_match(pcur) < dtuple_get_n_fields(search_tuple)) {
|
|
return (SEL_EXHAUSTED);
|
|
}
|
|
|
|
/* This is a non-locking consistent read: if necessary, fetch
|
|
a previous version of the record */
|
|
|
|
*offsets = rec_get_offsets(rec, index, *offsets, ULINT_UNDEFINED, heap);
|
|
|
|
if (!lock_clust_rec_cons_read_sees(rec, index, *offsets, pcur,
|
|
trx_get_vision(trx))) {
|
|
return (SEL_RETRY);
|
|
}
|
|
|
|
if (rec_get_deleted_flag(rec, dict_table_is_comp(index->table))) {
|
|
return (SEL_EXHAUSTED);
|
|
}
|
|
|
|
*out_rec = rec;
|
|
|
|
return (SEL_FOUND);
|
|
}
|
|
|
|
/** Check a pushed-down index condition.
|
|
@return ICP_NO_MATCH, ICP_MATCH, or ICP_OUT_OF_RANGE */
|
|
static ICP_RESULT row_search_idx_cond_check(
|
|
byte *mysql_rec, /*!< out: record
|
|
in MySQL format (invalid unless
|
|
prebuilt->idx_cond == true and
|
|
we return ICP_MATCH) */
|
|
row_prebuilt_t *prebuilt, /*!< in/out: prebuilt struct
|
|
for the table handle */
|
|
const rec_t *rec, /*!< in: InnoDB record */
|
|
const ulint *offsets) /*!< in: rec_get_offsets() */
|
|
{
|
|
ICP_RESULT result;
|
|
ulint i;
|
|
|
|
ut_ad(rec_offs_validate(rec, prebuilt->index, offsets));
|
|
|
|
if (!prebuilt->idx_cond) {
|
|
return (ICP_MATCH);
|
|
}
|
|
|
|
MONITOR_INC(MONITOR_ICP_ATTEMPTS);
|
|
|
|
/* Convert to MySQL format those fields that are needed for
|
|
evaluating the index condition. */
|
|
|
|
if (prebuilt->blob_heap != nullptr) {
|
|
mem_heap_empty(prebuilt->blob_heap);
|
|
}
|
|
|
|
for (i = 0; i < prebuilt->idx_cond_n_cols; i++) {
|
|
const mysql_row_templ_t *templ = &prebuilt->mysql_template[i];
|
|
|
|
/* Skip virtual columns */
|
|
if (templ->is_virtual) {
|
|
continue;
|
|
}
|
|
|
|
if (!row_sel_store_mysql_field(mysql_rec, prebuilt, rec, prebuilt->index,
|
|
offsets, templ->icp_rec_field_no, templ,
|
|
ULINT_UNDEFINED, nullptr, nullptr)) {
|
|
return (ICP_NO_MATCH);
|
|
}
|
|
}
|
|
|
|
/* We assume that the index conditions on
|
|
case-insensitive columns are case-insensitive. The
|
|
case of such columns may be wrong in a secondary
|
|
index, if the case of the column has been updated in
|
|
the past, or a record has been deleted and a record
|
|
inserted in a different case. */
|
|
result = innobase_index_cond(prebuilt->m_mysql_handler);
|
|
switch (result) {
|
|
case ICP_MATCH:
|
|
/* Convert the remaining fields to MySQL format.
|
|
If this is a secondary index record, we must defer
|
|
this until we have fetched the clustered index record. */
|
|
if (!prebuilt->need_to_access_clustered ||
|
|
prebuilt->index->is_clustered()) {
|
|
if (!row_sel_store_mysql_rec(mysql_rec, prebuilt, rec, NULL, FALSE,
|
|
prebuilt->index, offsets, false, nullptr,
|
|
nullptr)) {
|
|
ut_ad(prebuilt->index->is_clustered());
|
|
return (ICP_NO_MATCH);
|
|
}
|
|
}
|
|
MONITOR_INC(MONITOR_ICP_MATCH);
|
|
return (result);
|
|
case ICP_NO_MATCH:
|
|
MONITOR_INC(MONITOR_ICP_NO_MATCH);
|
|
return (result);
|
|
case ICP_OUT_OF_RANGE:
|
|
MONITOR_INC(MONITOR_ICP_OUT_OF_RANGE);
|
|
const auto record_buffer = row_sel_get_record_buffer(prebuilt);
|
|
if (record_buffer) {
|
|
record_buffer->set_out_of_range(true);
|
|
}
|
|
return (result);
|
|
}
|
|
|
|
ut_error;
|
|
return (result);
|
|
}
|
|
|
|
/** Check the pushed-down end-range condition to avoid extra traversal
|
|
if records are not with in view and also to avoid prefetching too
|
|
many records into the record buffer.
|
|
@param[in] mysql_rec record in MySQL format
|
|
@param[in] rec InnoDB record
|
|
@param[in] prebuilt prebuilt struct
|
|
@param[in] clust_templ_for_sec true if \a rec belongs to the secondary
|
|
index but the \a prebuilt template is in
|
|
clustered index format
|
|
@param[in] offsets information about column offsets in the
|
|
secondary index, if virtual columns need
|
|
to be copied into \a mysql_rec
|
|
@param[in,out] record_buffer the record buffer we are reading into,
|
|
or \c nullptr if there is no buffer
|
|
@retval true if the row in \a mysql_rec is out of range
|
|
@retval false if the row in \a mysql_rec is in range */
|
|
static bool row_search_end_range_check(byte *mysql_rec, const rec_t *rec,
|
|
row_prebuilt_t *prebuilt,
|
|
bool clust_templ_for_sec,
|
|
const ulint *offsets,
|
|
Record_buffer *record_buffer) {
|
|
const auto handler = prebuilt->m_mysql_handler;
|
|
ut_ad(handler->end_range != nullptr);
|
|
|
|
/* When reading from non-covering secondary indexes, mysql_rec won't
|
|
have the values of virtual columns until the handler has called
|
|
update_generated_read_fields(). If the end-range condition refers to a
|
|
virtual column, we may have to copy its value from the secondary index
|
|
before evaluating the condition. */
|
|
if (clust_templ_for_sec && handler->m_virt_gcol_in_end_range) {
|
|
ut_ad(offsets != nullptr);
|
|
for (ulint i = 0; i < prebuilt->n_template; ++i) {
|
|
const auto &templ = prebuilt->mysql_template[i];
|
|
|
|
if (templ.is_virtual && templ.icp_rec_field_no != ULINT_UNDEFINED &&
|
|
!row_sel_store_mysql_field(mysql_rec, prebuilt, rec, prebuilt->index,
|
|
offsets, templ.icp_rec_field_no, &templ,
|
|
ULINT_UNDEFINED, nullptr, nullptr)) {
|
|
return (false);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (handler->compare_key_in_buffer(mysql_rec) > 0) {
|
|
if (record_buffer != NULL) {
|
|
record_buffer->set_out_of_range(true);
|
|
}
|
|
|
|
return (true);
|
|
}
|
|
|
|
return (false);
|
|
}
|
|
|
|
/** Traverse to next/previous record.
|
|
@param[in] moves_up if true, move to next record else previous
|
|
@param[in] match_mode 0 or ROW_SEL_EXACT or ROW_SEL_EXACT_PREFIX
|
|
@param[in,out] pcur cursor to record
|
|
@param[in] mtr mini transaction
|
|
|
|
@return DB_SUCCESS or error code */
|
|
static dberr_t row_search_traverse(bool moves_up, ulint match_mode,
|
|
btr_pcur_t *pcur, mtr_t *mtr) {
|
|
dberr_t err = DB_SUCCESS;
|
|
|
|
if (moves_up) {
|
|
if (!btr_pcur_move_to_next(pcur, mtr)) {
|
|
err = (match_mode != 0) ? DB_RECORD_NOT_FOUND : DB_END_OF_INDEX;
|
|
return (err);
|
|
}
|
|
} else {
|
|
if (!btr_pcur_move_to_prev(pcur, mtr)) {
|
|
err = (match_mode != 0) ? DB_RECORD_NOT_FOUND : DB_END_OF_INDEX;
|
|
return (err);
|
|
}
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
/** Searches for rows in the database using cursor.
|
|
Function is for temporary tables that are not shared accross connections
|
|
and so lot of complexity is reduced especially locking and transaction related.
|
|
The cursor is an iterator over the table/index.
|
|
|
|
@param[out] buf buffer for the fetched row in MySQL format
|
|
@param[in] mode search mode PAGE_CUR_L
|
|
@param[in,out] prebuilt prebuilt struct for the table handler;
|
|
this contains the info to search_tuple,
|
|
index; if search tuple contains 0 field then
|
|
we position the cursor at start or the end of
|
|
index, depending on 'mode'
|
|
@param[in] match_mode 0 or ROW_SEL_EXACT or ROW_SEL_EXACT_PREFIX
|
|
@param[in] direction 0 or ROW_SEL_NEXT or ROW_SEL_PREV;
|
|
Note: if this is != 0, then prebuilt must has a
|
|
pcur with stored position! In opening of a
|
|
cursor 'direction' should be 0.
|
|
@return DB_SUCCESS or error code */
|
|
dberr_t row_search_no_mvcc(byte *buf, page_cur_mode_t mode,
|
|
row_prebuilt_t *prebuilt, ulint match_mode,
|
|
ulint direction) {
|
|
dict_index_t *index = prebuilt->index;
|
|
ut_ad(index->table->is_intrinsic());
|
|
|
|
const dtuple_t *search_tuple = prebuilt->search_tuple;
|
|
btr_pcur_t *pcur = prebuilt->pcur;
|
|
Row_sel_get_clust_rec_for_mysql row_sel_get_clust_rec_for_mysql;
|
|
|
|
const rec_t *result_rec = NULL;
|
|
const rec_t *clust_rec = NULL;
|
|
|
|
dberr_t err = DB_SUCCESS;
|
|
|
|
mem_heap_t *heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint *offsets = offsets_;
|
|
rec_offs_init(offsets_);
|
|
ut_ad(index && pcur && search_tuple);
|
|
|
|
/* Step-0: Re-use the cached mtr. */
|
|
mtr_t *mtr;
|
|
dict_index_t *clust_index = index->table->first_index();
|
|
|
|
if (!index->last_sel_cur) {
|
|
dict_allocate_mem_intrinsic_cache(index);
|
|
}
|
|
|
|
mtr = &index->last_sel_cur->mtr;
|
|
|
|
/* Step-1: Build the select graph. */
|
|
if (direction == 0 && prebuilt->sel_graph == NULL) {
|
|
row_prebuild_sel_graph(prebuilt);
|
|
}
|
|
|
|
que_thr_t *thr = que_fork_get_first_thr(prebuilt->sel_graph);
|
|
|
|
bool moves_up;
|
|
|
|
if (direction == 0) {
|
|
if (mode == PAGE_CUR_GE || mode == PAGE_CUR_G) {
|
|
moves_up = true;
|
|
} else {
|
|
moves_up = false;
|
|
}
|
|
|
|
} else if (direction == ROW_SEL_NEXT) {
|
|
moves_up = true;
|
|
} else {
|
|
moves_up = false;
|
|
}
|
|
|
|
/* Step-2: Open or Restore the cursor.
|
|
If search key is specified, cursor is open using the key else
|
|
cursor is open to return all the records. */
|
|
if (direction != 0) {
|
|
if (prebuilt->m_temp_read_shared && !prebuilt->m_temp_tree_modified) {
|
|
if (!mtr->is_active()) {
|
|
mtr_start(mtr);
|
|
}
|
|
|
|
/* This is an intrinsic table shared read, so we
|
|
do not rely on index->last_sel_cur, instead we rely
|
|
on "prebuilt->pcur", which supposes to position on
|
|
last read position for each read session. */
|
|
ut_ad(pcur->m_pos_state == BTR_PCUR_IS_POSITIONED);
|
|
err = row_search_traverse(moves_up, match_mode, pcur, mtr);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
return (err); /* purecov: inspected */
|
|
}
|
|
|
|
} else if (index->last_sel_cur->invalid || prebuilt->m_temp_tree_modified) {
|
|
/* Index tree has changed and so active cached cursor is no more valid.
|
|
Re-set it based on the last selected position. */
|
|
index->last_sel_cur->release();
|
|
prebuilt->m_temp_tree_modified = false;
|
|
|
|
if (direction == ROW_SEL_NEXT && pcur->m_search_mode == PAGE_CUR_GE) {
|
|
pcur->m_search_mode = PAGE_CUR_G;
|
|
}
|
|
|
|
mtr_start(mtr);
|
|
mtr_set_log_mode(mtr, MTR_LOG_NO_REDO);
|
|
|
|
mem_heap_t *heap = mem_heap_create(256);
|
|
|
|
dtuple_t *tuple = dict_index_build_data_tuple(index, pcur->m_old_rec,
|
|
pcur->m_old_n_fields, heap);
|
|
|
|
btr_pcur_open_with_no_init(index, tuple, pcur->m_search_mode,
|
|
BTR_SEARCH_LEAF, pcur, 0, mtr);
|
|
|
|
mem_heap_free(heap);
|
|
} else {
|
|
/* Restore the cursor for reading next record from cache
|
|
information. */
|
|
ut_ad(index->last_sel_cur->rec != NULL);
|
|
pcur->m_btr_cur.page_cur.rec = index->last_sel_cur->rec;
|
|
pcur->m_btr_cur.page_cur.block = index->last_sel_cur->block;
|
|
|
|
err = row_search_traverse(moves_up, match_mode, pcur, mtr);
|
|
if (err != DB_SUCCESS) {
|
|
return (err);
|
|
}
|
|
}
|
|
} else {
|
|
/* There could be previous uncommitted transaction if SELECT
|
|
is operation as part of SELECT (IF NOT FOUND) INSERT
|
|
(IF DUPLICATE) UPDATE plan. */
|
|
index->last_sel_cur->release();
|
|
|
|
/* Capture table snapshot in form of trx-id. */
|
|
index->trx_id = dict_table_get_curr_table_sess_trx_id(index->table);
|
|
|
|
/* Fresh search commences. */
|
|
mtr_start(mtr);
|
|
dict_disable_redo_if_temporary(index->table, mtr);
|
|
|
|
if (dtuple_get_n_fields(search_tuple) > 0) {
|
|
btr_pcur_open_with_no_init(index, search_tuple, mode, BTR_SEARCH_LEAF,
|
|
pcur, 0, mtr);
|
|
|
|
} else if (mode == PAGE_CUR_G || mode == PAGE_CUR_L) {
|
|
btr_pcur_open_at_index_side(mode == PAGE_CUR_G, index, BTR_SEARCH_LEAF,
|
|
pcur, false, 0, mtr);
|
|
}
|
|
}
|
|
|
|
/* Step-3: Traverse the records filtering non-qualifiying records. */
|
|
for (/* No op */; err == DB_SUCCESS;
|
|
err = row_search_traverse(moves_up, match_mode, pcur, mtr)) {
|
|
const rec_t *rec = btr_pcur_get_rec(pcur);
|
|
|
|
if (page_rec_is_infimum(rec) || page_rec_is_supremum(rec) ||
|
|
rec_get_deleted_flag(rec, dict_table_is_comp(index->table))) {
|
|
/* The infimum record on a page cannot be in the
|
|
result set, and neither can a record lock be placed on
|
|
it: we skip such a record. */
|
|
continue;
|
|
}
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap);
|
|
|
|
/* Note that we cannot trust the up_match value in the cursor
|
|
at this place because we can arrive here after moving the
|
|
cursor! Thus we have to recompare rec and search_tuple to
|
|
determine if they match enough. */
|
|
if (match_mode == ROW_SEL_EXACT) {
|
|
/* Test if the index record matches completely to
|
|
search_tuple in prebuilt: if not, then we return with
|
|
DB_RECORD_NOT_FOUND */
|
|
if (0 != cmp_dtuple_rec(search_tuple, rec, index, offsets)) {
|
|
err = DB_RECORD_NOT_FOUND;
|
|
break;
|
|
}
|
|
} else if (match_mode == ROW_SEL_EXACT_PREFIX) {
|
|
if (!cmp_dtuple_is_prefix_of_rec(search_tuple, rec, index, offsets)) {
|
|
err = DB_RECORD_NOT_FOUND;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Get the clustered index. We always need clustered index
|
|
record for snapshort verification. */
|
|
if (index != clust_index) {
|
|
err =
|
|
row_sel_get_clust_rec_for_mysql(prebuilt, index, rec, thr, &clust_rec,
|
|
&offsets, &heap, NULL, mtr, nullptr);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
break;
|
|
}
|
|
|
|
if (rec_get_deleted_flag(clust_rec, dict_table_is_comp(index->table))) {
|
|
/* The record is delete marked in clustered
|
|
index. We can skip this record. */
|
|
continue;
|
|
}
|
|
|
|
result_rec = clust_rec;
|
|
} else {
|
|
result_rec = rec;
|
|
}
|
|
|
|
/* Step-4: Cache the row-id of selected row to prebuilt cache.*/
|
|
if (prebuilt->clust_index_was_generated) {
|
|
row_sel_store_row_id_to_prebuilt(prebuilt, result_rec, clust_index,
|
|
offsets);
|
|
}
|
|
|
|
/* Step-5: Convert selected record to MySQL format and
|
|
store it. */
|
|
if (prebuilt->template_type == ROW_MYSQL_DUMMY_TEMPLATE) {
|
|
const rec_t *ret_rec =
|
|
(index != clust_index && prebuilt->need_to_access_clustered)
|
|
? result_rec
|
|
: rec;
|
|
|
|
offsets =
|
|
rec_get_offsets(ret_rec, index, offsets, ULINT_UNDEFINED, &heap);
|
|
|
|
memcpy(buf + 4, ret_rec - rec_offs_extra_size(offsets),
|
|
rec_offs_size(offsets));
|
|
|
|
mach_write_to_4(buf, rec_offs_extra_size(offsets) + 4);
|
|
|
|
} else if (!row_sel_store_mysql_rec(buf, prebuilt, result_rec, NULL, TRUE,
|
|
clust_index, offsets, false, nullptr,
|
|
nullptr)) {
|
|
err = DB_ERROR;
|
|
break;
|
|
}
|
|
|
|
/* Step-6: Store cursor position to fetch next record.
|
|
MySQL calls this function iteratively get_next(), get_next()
|
|
fashion. */
|
|
ut_ad(err == DB_SUCCESS);
|
|
index->last_sel_cur->rec = btr_pcur_get_rec(pcur);
|
|
index->last_sel_cur->block = btr_pcur_get_block(pcur);
|
|
|
|
/* This is needed in order to restore the cursor if index
|
|
structure changes while SELECT is still active. */
|
|
pcur->m_old_rec = dict_index_copy_rec_order_prefix(
|
|
index, rec, &pcur->m_old_n_fields, &pcur->m_old_rec_buf,
|
|
&pcur->m_buf_size);
|
|
|
|
break;
|
|
}
|
|
|
|
if (err != DB_SUCCESS) {
|
|
index->last_sel_cur->release();
|
|
}
|
|
|
|
if (heap != NULL) {
|
|
mem_heap_free(heap);
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
/** Extract virtual column data from a virtual index record and fill a dtuple
|
|
@param[in] rec the virtual (secondary) index record
|
|
@param[in] index the virtual index
|
|
@param[in,out] vrow the dtuple where data extract to
|
|
@param[in] heap memory heap to allocate memory
|
|
*/
|
|
static void row_sel_fill_vrow(const rec_t *rec, dict_index_t *index,
|
|
const dtuple_t **vrow, mem_heap_t *heap) {
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint *offsets = offsets_;
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_ad(!(*vrow));
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap);
|
|
|
|
*vrow =
|
|
dtuple_create_with_vcol(heap, 0, dict_table_get_n_v_cols(index->table));
|
|
|
|
/* Initialize all virtual row's mtype to DATA_MISSING */
|
|
dtuple_init_v_fld(*vrow);
|
|
|
|
for (ulint i = 0; i < dict_index_get_n_fields(index); i++) {
|
|
const dict_field_t *field;
|
|
const dict_col_t *col;
|
|
|
|
field = index->get_field(i);
|
|
col = field->col;
|
|
|
|
if (col->is_virtual()) {
|
|
const byte *data;
|
|
ulint len;
|
|
|
|
data = rec_get_nth_field(rec, offsets, i, &len);
|
|
|
|
const dict_v_col_t *vcol = reinterpret_cast<const dict_v_col_t *>(col);
|
|
|
|
dfield_t *dfield = dtuple_get_nth_v_field(*vrow, vcol->v_pos);
|
|
dfield_set_data(dfield, data, len);
|
|
col->copy_type(dfield_get_type(dfield));
|
|
}
|
|
}
|
|
}
|
|
/** The return type of row_compare_row_to_range() which summarizes information
|
|
about the relation between the row being processed, and the range of the scan */
|
|
struct row_to_range_relation_t {
|
|
/** true: we don't know, false: row is not in range */
|
|
bool row_can_be_in_range;
|
|
/** true: we don't know, false: gap has nothing in common with range */
|
|
bool gap_can_intersect_range;
|
|
/** true: row exactly matches end of range, false: we don't know */
|
|
bool row_must_be_at_end;
|
|
};
|
|
|
|
/** A helper function extracted from row_search_mvcc() which compares the row
|
|
being processed with the range of the scan.
|
|
It does not modify any of it's arguments and returns a summary of situation.
|
|
All the arguments are named the same way as local variables at place of call,
|
|
and have same values. */
|
|
static row_to_range_relation_t row_compare_row_to_range(
|
|
const bool set_also_gap_locks, const trx_t *const trx,
|
|
const ibool unique_search, const dict_index_t *const index,
|
|
const dict_index_t *const clust_index, const rec_t *const rec,
|
|
const ibool comp, const page_cur_mode_t mode, const ulint direction,
|
|
const dtuple_t *search_tuple, const ulint *const offsets,
|
|
const ibool moves_up, const row_prebuilt_t *const prebuilt) {
|
|
row_to_range_relation_t row_to_range_relation;
|
|
row_to_range_relation.row_can_be_in_range = true;
|
|
row_to_range_relation.gap_can_intersect_range = true;
|
|
row_to_range_relation.row_must_be_at_end = false;
|
|
|
|
/* We don't know how to compare row which is on supremum with range, but this
|
|
should not be a problem because row_search_mvcc "skips" over them without
|
|
calling our function */
|
|
ut_ad(!page_rec_is_supremum(rec));
|
|
if (page_rec_is_supremum(rec)) {
|
|
return (row_to_range_relation);
|
|
}
|
|
|
|
/* Try to place a lock on the index record; note that delete
|
|
marked records are a special case in a unique search. If there
|
|
is a non-delete marked record, then it is enough to lock its
|
|
existence with LOCK_REC_NOT_GAP. */
|
|
|
|
/* If we are doing a 'greater or equal than a primary key
|
|
value' search from a clustered index, and we find a record
|
|
that has that exact primary key value, then there is no need
|
|
to lock the gap before the record, because no insert in the
|
|
gap can be in our search range. That is, no phantom row can
|
|
appear that way.
|
|
|
|
An example: if col1 is the primary key, the search is WHERE
|
|
col1 >= 100, and we find a record where col1 = 100, then no
|
|
need to lock the gap before that record. */
|
|
|
|
if (!set_also_gap_locks || trx->skip_gap_locks() ||
|
|
(unique_search && !rec_get_deleted_flag(rec, comp)) ||
|
|
dict_index_is_spatial(index) ||
|
|
(index == clust_index && mode == PAGE_CUR_GE && direction == 0 &&
|
|
dtuple_get_n_fields_cmp(search_tuple) ==
|
|
dict_index_get_n_unique(index) &&
|
|
0 == cmp_dtuple_rec(search_tuple, rec, index, offsets))) {
|
|
row_to_range_relation.gap_can_intersect_range = false;
|
|
return (row_to_range_relation);
|
|
}
|
|
|
|
/* We don't know how to handle HANDLER interface */
|
|
if (prebuilt->used_in_HANDLER) {
|
|
return (row_to_range_relation);
|
|
}
|
|
|
|
/* While I believe that we handle semi-consistent reads correctly, the proof
|
|
is quite complicated and lingers on the fact that semi-consistent reads are
|
|
used only if we don't use gap locks. And fortunately, we've already checked
|
|
above that trx->skip_gap_locks() is false, so we don't have to go through the
|
|
whole reasoning about what exactly happens in case the row which is at the
|
|
end of the range got locked by another transaction, removed, purged, and while
|
|
we were doing semi-consistent read on it. */
|
|
ut_ad(!trx->skip_gap_locks());
|
|
ut_ad(prebuilt->row_read_type == ROW_READ_WITH_LOCKS);
|
|
|
|
/* Following heuristics are meant to avoid locking the row itself, or even
|
|
the gap before it, in case when the row is "after the end of range". The
|
|
difficulty here is in that the index itself can be declared as either
|
|
ascending or descending, separately for each column, and cursor can be
|
|
PAGE_CUR_G(E) or PAGE_CUR_L(E) etc., and direction of scan can be 0,
|
|
ROW_SEL_NEXT or ROW_SEL_PREV, and this might be a secondary index (with
|
|
duplicates). So we limit ourselves just to the cases, which are at the
|
|
same common, tested, actionable and easy to reason about.
|
|
In particular we only handle cases where we iterate the index in its
|
|
natural order. */
|
|
if (index == clust_index && (mode == PAGE_CUR_GE || mode == PAGE_CUR_G) &&
|
|
(direction == 0 || direction == ROW_SEL_NEXT) &&
|
|
prebuilt->is_reading_range()) {
|
|
ut_ad(moves_up);
|
|
const auto stop_len = dtuple_get_n_fields_cmp(prebuilt->m_stop_tuple);
|
|
if (0 < stop_len) {
|
|
const auto index_len = dict_index_get_n_unique(index);
|
|
ut_ad(prebuilt->m_mysql_handler->end_range != nullptr);
|
|
if (stop_len <= index_len) {
|
|
const auto cmp =
|
|
cmp_dtuple_rec(prebuilt->m_stop_tuple, rec, index, offsets);
|
|
|
|
if (cmp < 0) {
|
|
row_to_range_relation.row_can_be_in_range = false;
|
|
if (prebuilt->m_stop_tuple_found) {
|
|
ut_ad(stop_len == index_len);
|
|
ut_ad(direction != 0);
|
|
row_to_range_relation.gap_can_intersect_range = false;
|
|
return (row_to_range_relation);
|
|
}
|
|
return (row_to_range_relation);
|
|
}
|
|
|
|
if (cmp == 0) {
|
|
ut_ad(!prebuilt->m_stop_tuple_found);
|
|
row_to_range_relation.row_can_be_in_range =
|
|
prebuilt->m_mysql_handler->end_range->flag != HA_READ_BEFORE_KEY;
|
|
row_to_range_relation.row_must_be_at_end = stop_len == index_len;
|
|
return (row_to_range_relation);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return (row_to_range_relation);
|
|
}
|
|
|
|
/** Searches for rows in the database using cursor.
|
|
Function is mainly used for tables that are shared accorss connection and
|
|
so it employs technique that can help re-construct the rows that
|
|
transaction is suppose to see.
|
|
It also has optimization such as pre-caching the rows, using AHI, etc.
|
|
|
|
@param[out] buf buffer for the fetched row in MySQL format
|
|
@param[in] mode search mode PAGE_CUR_L
|
|
@param[in,out] prebuilt prebuilt struct for the table handler;
|
|
this contains the info to search_tuple,
|
|
index; if search tuple contains 0 field then
|
|
we position the cursor at start or the end of
|
|
index, depending on 'mode'
|
|
@param[in] match_mode 0 or ROW_SEL_EXACT or ROW_SEL_EXACT_PREFIX
|
|
@param[in] direction 0 or ROW_SEL_NEXT or ROW_SEL_PREV;
|
|
Note: if this is != 0, then prebuilt must has a
|
|
pcur with stored position! In opening of a
|
|
cursor 'direction' should be 0.
|
|
@return DB_SUCCESS or error code */
|
|
dberr_t row_search_mvcc(byte *buf, page_cur_mode_t mode,
|
|
row_prebuilt_t *prebuilt, ulint match_mode,
|
|
ulint direction) {
|
|
DBUG_TRACE;
|
|
|
|
dict_index_t *index = prebuilt->index;
|
|
ibool comp = dict_table_is_comp(index->table);
|
|
const dtuple_t *search_tuple = prebuilt->search_tuple;
|
|
btr_pcur_t *pcur = prebuilt->pcur;
|
|
trx_t *trx = prebuilt->trx;
|
|
dict_index_t *clust_index;
|
|
/* True if we are scanning a secondary index, but the template is based
|
|
on the primary index. */
|
|
bool clust_templ_for_sec;
|
|
que_thr_t *thr;
|
|
const rec_t *prev_rec = NULL;
|
|
const rec_t *rec = NULL;
|
|
byte *end_range_cache = NULL;
|
|
const dtuple_t *prev_vrow = NULL;
|
|
const dtuple_t *vrow = NULL;
|
|
const rec_t *result_rec = NULL;
|
|
const rec_t *clust_rec;
|
|
Row_sel_get_clust_rec_for_mysql row_sel_get_clust_rec_for_mysql;
|
|
dberr_t err = DB_SUCCESS;
|
|
ibool unique_search = FALSE;
|
|
ibool mtr_has_extra_clust_latch = FALSE;
|
|
ibool moves_up = FALSE;
|
|
bool set_also_gap_locks = true;
|
|
/* if the query is a plain locking SELECT, and the isolation level
|
|
is <= TRX_ISO_READ_COMMITTED, then this is set to FALSE */
|
|
ibool did_semi_consistent_read = FALSE;
|
|
/* if the returned record was locked and we did a semi-consistent
|
|
read (fetch the newest committed version), then this is set to
|
|
TRUE */
|
|
ulint next_offs;
|
|
ibool same_user_rec = FALSE;
|
|
mtr_t mtr;
|
|
mem_heap_t *heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint *offsets = offsets_;
|
|
ulint sec_offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint *sec_offsets = nullptr;
|
|
ibool table_lock_waited = FALSE;
|
|
byte *next_buf = 0;
|
|
bool spatial_search = false;
|
|
ulint end_loop = 0;
|
|
lizard::AsofVisonWrapper asof_wrapper;
|
|
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_ad(index && pcur && search_tuple);
|
|
ut_a(prebuilt->magic_n == ROW_PREBUILT_ALLOCATED);
|
|
ut_a(prebuilt->magic_n2 == ROW_PREBUILT_ALLOCATED);
|
|
ut_a(!trx->has_search_latch);
|
|
|
|
assert_lizard_dict_index_check(index);
|
|
assert_lizard_dict_table_check(index->table);
|
|
|
|
ut_ad(!pcur->m_cleanout_pages || pcur->m_cleanout_pages->is_empty());
|
|
|
|
ut_ad(!prebuilt->sample->enabled || index == index->table->first_index());
|
|
ut_ad(!prebuilt->sample->enabled || match_mode == 0);
|
|
|
|
/* We don't support FTS queries from the HANDLER interfaces, because
|
|
we implemented FTS as reversed inverted index with auxiliary tables.
|
|
So anything related to traditional index query would not apply to
|
|
it. */
|
|
if (prebuilt->index->type & DICT_FTS) {
|
|
return DB_END_OF_INDEX;
|
|
}
|
|
|
|
#ifdef UNIV_DEBUG
|
|
{
|
|
btrsea_sync_check check(trx->has_search_latch);
|
|
ut_ad(!sync_check_iterate(check));
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
if (dict_table_is_discarded(prebuilt->table)) {
|
|
return DB_TABLESPACE_DELETED;
|
|
|
|
} else if (prebuilt->table->ibd_file_missing) {
|
|
return DB_TABLESPACE_NOT_FOUND;
|
|
|
|
} else if (!prebuilt->index_usable) {
|
|
return DB_MISSING_HISTORY;
|
|
|
|
} else if (prebuilt->index->is_corrupted()) {
|
|
return DB_CORRUPTION;
|
|
}
|
|
|
|
/* We need to get the virtual column values stored in secondary
|
|
index key, if this is covered index scan or virtual key read is
|
|
requested. */
|
|
bool need_vrow = dict_index_has_virtual(prebuilt->index) &&
|
|
(prebuilt->read_just_key || prebuilt->m_read_virtual_key);
|
|
|
|
/* Reset the new record lock info if trx_t::allow_semi_consistent().
|
|
Then we are able to remove the record locks set here on an
|
|
individual row. */
|
|
std::fill_n(prebuilt->new_rec_lock, row_prebuilt_t::LOCK_COUNT, false);
|
|
/*-------------------------------------------------------------*/
|
|
/* PHASE 1: Try to pop the row from the record buffer or from
|
|
the prefetch cache */
|
|
|
|
const auto record_buffer = row_sel_get_record_buffer(prebuilt);
|
|
|
|
if (UNIV_UNLIKELY(direction == 0)) {
|
|
trx->op_info = "starting index read";
|
|
|
|
prebuilt->n_rows_fetched = 0;
|
|
prebuilt->n_fetch_cached = 0;
|
|
prebuilt->fetch_cache_first = 0;
|
|
if (record_buffer != nullptr) {
|
|
record_buffer->reset();
|
|
}
|
|
|
|
if (prebuilt->sel_graph == NULL) {
|
|
/* Build a dummy select query graph */
|
|
row_prebuild_sel_graph(prebuilt);
|
|
}
|
|
} else {
|
|
trx->op_info = "fetching rows";
|
|
|
|
if (prebuilt->n_rows_fetched == 0) {
|
|
prebuilt->fetch_direction = direction;
|
|
}
|
|
|
|
if (UNIV_UNLIKELY(direction != prebuilt->fetch_direction)) {
|
|
if (UNIV_UNLIKELY(prebuilt->n_fetch_cached > 0)) {
|
|
ut_error;
|
|
/* TODO: scrollable cursor: restore cursor to
|
|
the place of the latest returned row,
|
|
or better: prevent caching for a scroll
|
|
cursor! */
|
|
}
|
|
|
|
prebuilt->n_rows_fetched = 0;
|
|
prebuilt->n_fetch_cached = 0;
|
|
prebuilt->fetch_cache_first = 0;
|
|
|
|
/* A record buffer is not used for scroll cursors.
|
|
Otherwise, it would have to be reset here too. */
|
|
ut_ad(record_buffer == nullptr);
|
|
|
|
} else if (UNIV_LIKELY(prebuilt->n_fetch_cached > 0)) {
|
|
row_sel_dequeue_cached_row_for_mysql(buf, prebuilt);
|
|
|
|
prebuilt->n_rows_fetched++;
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
} else if (prebuilt->m_end_range == true) {
|
|
prebuilt->m_end_range = false;
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto func_exit;
|
|
}
|
|
|
|
/* The prefetch cache is exhausted, so fetch_cache_first
|
|
should point to the beginning of the cache. */
|
|
ut_ad(prebuilt->fetch_cache_first == 0);
|
|
|
|
if (record_buffer != nullptr && record_buffer->is_out_of_range()) {
|
|
/* The previous returned row was popped from
|
|
the fetch cache, but the end of the range was
|
|
reached while filling the cache, so there are
|
|
no more rows to put into the cache. */
|
|
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto func_exit;
|
|
}
|
|
|
|
prebuilt->n_rows_fetched++;
|
|
|
|
if (prebuilt->n_rows_fetched > 1000000000) {
|
|
/* Prevent wrap-over */
|
|
prebuilt->n_rows_fetched = 500000000;
|
|
}
|
|
|
|
mode = pcur->m_search_mode;
|
|
}
|
|
|
|
/* In a search where at most one record in the index may match, we
|
|
can use a LOCK_REC_NOT_GAP type record lock when locking a
|
|
non-delete-marked matching record.
|
|
|
|
Note that in a unique secondary index there may be different
|
|
delete-marked versions of a record where only the primary key
|
|
values differ: thus in a secondary index we must use next-key
|
|
locks when locking delete-marked records. */
|
|
|
|
if (match_mode == ROW_SEL_EXACT && dict_index_is_unique(index) &&
|
|
dtuple_get_n_fields(search_tuple) == dict_index_get_n_unique(index) &&
|
|
(index->is_clustered() || !dtuple_contains_null(search_tuple))) {
|
|
/* Note above that a UNIQUE secondary index can contain many
|
|
rows with the same key value if one of the columns is the SQL
|
|
null. A clustered index under MySQL can never contain null
|
|
columns because we demand that all the columns in primary key
|
|
are non-null. */
|
|
|
|
unique_search = TRUE;
|
|
|
|
/* Even if the condition is unique, MySQL seems to try to
|
|
retrieve also a second row if a primary key contains more than
|
|
1 column. Return immediately if this is not a HANDLER
|
|
command. */
|
|
|
|
if (UNIV_UNLIKELY(direction != 0 && !prebuilt->used_in_HANDLER)) {
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto func_exit;
|
|
}
|
|
}
|
|
|
|
/* We don't support sequential scan for Rtree index, because it
|
|
is no meaning to do so. */
|
|
if (dict_index_is_spatial(index) && !RTREE_SEARCH_MODE(mode)) {
|
|
err = DB_END_OF_INDEX;
|
|
goto func_exit;
|
|
}
|
|
|
|
mtr_start(&mtr);
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/* PHASE 2: Try fast adaptive hash index search if possible */
|
|
|
|
/* Next test if this is the special case where we can use the fast
|
|
adaptive hash index to try the search. Since we must release the
|
|
search system latch when we retrieve an externally stored field, we
|
|
cannot use the adaptive hash index in a search in the case the row
|
|
may be long and there may be externally stored fields */
|
|
|
|
if (UNIV_UNLIKELY(direction == 0) && unique_search && btr_search_enabled &&
|
|
index->is_clustered() && !prebuilt->templ_contains_blob &&
|
|
!prebuilt->used_in_HANDLER &&
|
|
(prebuilt->mysql_row_len < UNIV_PAGE_SIZE / 8) && !prebuilt->innodb_api) {
|
|
mode = PAGE_CUR_GE;
|
|
|
|
if (trx->mysql_n_tables_locked == 0 && !prebuilt->ins_sel_stmt &&
|
|
prebuilt->select_lock_type == LOCK_NONE &&
|
|
trx->isolation_level > TRX_ISO_READ_UNCOMMITTED &&
|
|
// MVCC::is_view_active(trx->read_view)) {
|
|
trx->vision.is_active()) {
|
|
/* This is a SELECT query done as a consistent read,
|
|
and the read view has already been allocated:
|
|
let us try a search shortcut through the hash
|
|
index.
|
|
NOTE that we must also test that
|
|
mysql_n_tables_locked == 0, because this might
|
|
also be INSERT INTO ... SELECT ... or
|
|
CREATE TABLE ... SELECT ... . Our algorithm is
|
|
NOT prepared to inserts interleaved with the SELECT,
|
|
and if we try that, we can deadlock on the adaptive
|
|
hash index semaphore! */
|
|
|
|
ut_a(!trx->has_search_latch);
|
|
rw_lock_s_lock(btr_get_search_latch(index));
|
|
trx->has_search_latch = true;
|
|
|
|
/* set as-of condition vision if need */
|
|
asof_wrapper.set_as_of_vision(prebuilt);
|
|
|
|
switch (row_sel_try_search_shortcut_for_mysql(&rec, prebuilt, &offsets,
|
|
&heap, &mtr)) {
|
|
case SEL_FOUND:
|
|
/* At this point, rec is protected by
|
|
a page latch that was acquired by
|
|
row_sel_try_search_shortcut_for_mysql().
|
|
The latch will not be released until
|
|
mtr_commit(&mtr). */
|
|
ut_ad(!rec_get_deleted_flag(rec, comp));
|
|
|
|
if (prebuilt->idx_cond) {
|
|
switch (row_search_idx_cond_check(buf, prebuilt, rec, offsets)) {
|
|
case ICP_NO_MATCH:
|
|
case ICP_OUT_OF_RANGE:
|
|
goto shortcut_mismatch;
|
|
case ICP_MATCH:
|
|
goto shortcut_match;
|
|
}
|
|
}
|
|
|
|
if (!row_sel_store_mysql_rec(buf, prebuilt, rec, NULL, FALSE, index,
|
|
offsets, false, nullptr, nullptr)) {
|
|
/* Only fresh inserts may contain
|
|
incomplete externally stored
|
|
columns. Pretend that such
|
|
records do not exist. Such
|
|
records may only be accessed
|
|
at the READ UNCOMMITTED
|
|
isolation level or when
|
|
rolling back a recovered
|
|
transaction. Rollback happens
|
|
at a lower level, not here. */
|
|
|
|
/* Proceed as in case SEL_RETRY. */
|
|
break;
|
|
}
|
|
|
|
shortcut_match:
|
|
mtr_commit(&mtr);
|
|
|
|
/* NOTE that we do NOT store the cursor
|
|
position */
|
|
|
|
err = DB_SUCCESS;
|
|
|
|
rw_lock_s_unlock(btr_get_search_latch(index));
|
|
trx->has_search_latch = false;
|
|
|
|
goto func_exit;
|
|
|
|
case SEL_EXHAUSTED:
|
|
shortcut_mismatch:
|
|
mtr_commit(&mtr);
|
|
|
|
err = DB_RECORD_NOT_FOUND;
|
|
|
|
rw_lock_s_unlock(btr_get_search_latch(index));
|
|
trx->has_search_latch = false;
|
|
|
|
/* NOTE that we do NOT store the cursor
|
|
position */
|
|
|
|
goto func_exit;
|
|
|
|
case SEL_RETRY:
|
|
break;
|
|
|
|
default:
|
|
ut_ad(0);
|
|
}
|
|
|
|
mtr_commit(&mtr);
|
|
mtr_start(&mtr);
|
|
|
|
rw_lock_s_unlock(btr_get_search_latch(index));
|
|
trx->has_search_latch = false;
|
|
}
|
|
}
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/* PHASE 3: Open or restore index cursor position */
|
|
|
|
spatial_search = dict_index_is_spatial(index) && mode >= PAGE_CUR_CONTAIN;
|
|
|
|
/* The state of a running trx can only be changed by the
|
|
thread that is currently serving the transaction. Because we
|
|
are that thread, we can read trx->state without holding any
|
|
mutex. */
|
|
ut_ad(prebuilt->sql_stat_start || trx->state == TRX_STATE_ACTIVE);
|
|
|
|
ut_ad(!trx_is_started(trx) || trx->state == TRX_STATE_ACTIVE);
|
|
|
|
ut_ad(prebuilt->sql_stat_start || prebuilt->select_lock_type != LOCK_NONE ||
|
|
trx->vision.is_active() || srv_read_only_mode);
|
|
|
|
trx_start_if_not_started(trx, false);
|
|
|
|
if (prebuilt->table->skip_gap_locks() ||
|
|
(trx->skip_gap_locks() && prebuilt->select_lock_type != LOCK_NONE &&
|
|
trx->mysql_thd != NULL && thd_is_select(trx->mysql_thd))) {
|
|
/* It is a plain locking SELECT and the isolation
|
|
level is low: do not lock gaps */
|
|
|
|
/* Reads on DD tables dont require gap-locks as serializability
|
|
between different DDL statements is achieved using
|
|
metadata locks */
|
|
set_also_gap_locks = false;
|
|
}
|
|
|
|
/* Note that if the search mode was GE or G, then the cursor
|
|
naturally moves upward (in fetch next) in alphabetical order,
|
|
otherwise downward */
|
|
|
|
if (direction == 0) {
|
|
if (mode == PAGE_CUR_GE || mode == PAGE_CUR_G || mode >= PAGE_CUR_CONTAIN) {
|
|
moves_up = TRUE;
|
|
}
|
|
|
|
} else if (direction == ROW_SEL_NEXT) {
|
|
moves_up = TRUE;
|
|
}
|
|
|
|
thr = que_fork_get_first_thr(prebuilt->sel_graph);
|
|
|
|
que_thr_move_to_run_state_for_mysql(thr, trx);
|
|
|
|
clust_index = index->table->first_index();
|
|
|
|
clust_templ_for_sec =
|
|
index != clust_index && prebuilt->need_to_access_clustered;
|
|
|
|
/* Do some start-of-statement preparations */
|
|
|
|
if (!prebuilt->sql_stat_start) {
|
|
/* No need to set an intention lock or assign a read view */
|
|
|
|
//if (!MVCC::is_view_active(trx->read_view)
|
|
if (!trx->vision.is_active() && !srv_read_only_mode &&
|
|
prebuilt->select_lock_type == LOCK_NONE) {
|
|
ib::error(ER_IB_MSG_1031) << "MySQL is trying to perform a"
|
|
" consistent read but the read view is not"
|
|
" assigned!";
|
|
trx_print(stderr, trx, 600);
|
|
fputc('\n', stderr);
|
|
ut_error;
|
|
}
|
|
} else if (prebuilt->select_lock_type == LOCK_NONE) {
|
|
/* This is a consistent read */
|
|
/* Assign a read view for the query */
|
|
|
|
if (!srv_read_only_mode) {
|
|
trx_assign_read_view(trx);
|
|
|
|
/* convert ctx to innobase, only set once */
|
|
if ((err = lizard::convert_fbq_ctx_to_innobase(prebuilt))
|
|
!= DB_SUCCESS) {
|
|
goto as_of_error;
|
|
}
|
|
}
|
|
|
|
prebuilt->sql_stat_start = FALSE;
|
|
} else {
|
|
wait_table_again:
|
|
err = lock_table(0, index->table,
|
|
prebuilt->select_lock_type == LOCK_S ? LOCK_IS : LOCK_IX,
|
|
thr);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
table_lock_waited = TRUE;
|
|
goto lock_table_wait;
|
|
}
|
|
prebuilt->sql_stat_start = FALSE;
|
|
}
|
|
|
|
/* set as-of condition vision if need */
|
|
asof_wrapper.set_as_of_vision(prebuilt);
|
|
|
|
/* Open or restore index cursor position */
|
|
|
|
if (UNIV_LIKELY(direction != 0)) {
|
|
if (spatial_search) {
|
|
/* R-Tree access does not need to do
|
|
cursor position and resposition */
|
|
goto next_rec;
|
|
}
|
|
|
|
ibool need_to_process = sel_restore_position_for_mysql(
|
|
&same_user_rec, BTR_SEARCH_LEAF, pcur, prebuilt, moves_up, &mtr);
|
|
|
|
if (UNIV_UNLIKELY(need_to_process)) {
|
|
if (UNIV_UNLIKELY(prebuilt->row_read_type ==
|
|
ROW_READ_DID_SEMI_CONSISTENT)) {
|
|
/* We did a semi-consistent read,
|
|
but the record was removed in
|
|
the meantime. */
|
|
prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT;
|
|
}
|
|
} else if (UNIV_LIKELY(prebuilt->row_read_type !=
|
|
ROW_READ_DID_SEMI_CONSISTENT)) {
|
|
/* The cursor was positioned on the record
|
|
that we returned previously. If we need
|
|
to repeat a semi-consistent read as a
|
|
pessimistic locking read, the record
|
|
cannot be skipped. */
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
} else if (dtuple_get_n_fields(search_tuple) > 0) {
|
|
pcur->m_btr_cur.thr = thr;
|
|
|
|
if (dict_index_is_spatial(index)) {
|
|
bool need_pred_lock = set_also_gap_locks && !trx->skip_gap_locks() &&
|
|
prebuilt->select_lock_type != LOCK_NONE;
|
|
|
|
if (!prebuilt->rtr_info) {
|
|
prebuilt->rtr_info = rtr_create_rtr_info(
|
|
need_pred_lock, true, btr_pcur_get_btr_cur(pcur), index);
|
|
prebuilt->rtr_info->search_tuple = search_tuple;
|
|
prebuilt->rtr_info->search_mode = mode;
|
|
rtr_info_update_btr(btr_pcur_get_btr_cur(pcur), prebuilt->rtr_info);
|
|
} else {
|
|
rtr_info_reinit_in_cursor(btr_pcur_get_btr_cur(pcur), index,
|
|
need_pred_lock);
|
|
prebuilt->rtr_info->search_tuple = search_tuple;
|
|
prebuilt->rtr_info->search_mode = mode;
|
|
}
|
|
}
|
|
|
|
btr_pcur_open_with_no_init(index, search_tuple, mode, BTR_SEARCH_LEAF, pcur,
|
|
0, &mtr);
|
|
|
|
pcur->m_trx_if_known = trx;
|
|
|
|
rec = btr_pcur_get_rec(pcur);
|
|
|
|
if (!moves_up && !page_rec_is_supremum(rec) && set_also_gap_locks &&
|
|
!trx->skip_gap_locks() && prebuilt->select_lock_type != LOCK_NONE &&
|
|
!dict_index_is_spatial(index)) {
|
|
/* Try to place a gap lock on the next index record
|
|
to prevent phantoms in ORDER BY ... DESC queries */
|
|
const rec_t *next_rec = page_rec_get_next_const(rec);
|
|
|
|
offsets =
|
|
rec_get_offsets(next_rec, index, offsets, ULINT_UNDEFINED, &heap);
|
|
err = sel_set_rec_lock(pcur, next_rec, index, offsets,
|
|
prebuilt->select_mode, prebuilt->select_lock_type,
|
|
LOCK_GAP, thr, &mtr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
err = DB_SUCCESS;
|
|
case DB_SUCCESS:
|
|
break;
|
|
case DB_SKIP_LOCKED:
|
|
case DB_LOCK_NOWAIT:
|
|
ut_ad(0);
|
|
goto next_rec;
|
|
default:
|
|
goto lock_wait_or_error;
|
|
}
|
|
}
|
|
} else if (prebuilt->sample->enabled) {
|
|
ut_ad(mode == PAGE_CUR_G);
|
|
btr_sample_pcur_open(prebuilt->sample, index, &mtr);
|
|
} else if (mode == PAGE_CUR_G || mode == PAGE_CUR_L) {
|
|
btr_pcur_open_at_index_side(mode == PAGE_CUR_G, index, BTR_SEARCH_LEAF,
|
|
pcur, false, 0, &mtr);
|
|
}
|
|
|
|
rec_loop:
|
|
DEBUG_SYNC_C("row_search_rec_loop");
|
|
|
|
prebuilt->lob_undo_reset();
|
|
|
|
if (trx_is_interrupted(trx)) {
|
|
if (!spatial_search) {
|
|
btr_pcur_store_position(pcur, &mtr);
|
|
}
|
|
err = DB_INTERRUPTED;
|
|
goto normal_return;
|
|
}
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/* PHASE 4: Look for matching records in a loop */
|
|
|
|
rec = btr_pcur_get_rec(pcur);
|
|
|
|
ut_ad(!!page_rec_is_comp(rec) == comp);
|
|
|
|
if (page_rec_is_infimum(rec)) {
|
|
/* The infimum record on a page cannot be in the result set,
|
|
and neither can a record lock be placed on it: we skip such
|
|
a record. */
|
|
|
|
prev_rec = NULL;
|
|
goto next_rec;
|
|
}
|
|
|
|
if (page_rec_is_supremum(rec)) {
|
|
DBUG_EXECUTE_IF(
|
|
"compare_end_range", if (end_loop < 100) { end_loop = 100; });
|
|
|
|
/** Compare the last record of the page with end range
|
|
passed to InnoDB when there is no ICP and number of
|
|
loops in row_search_mvcc for rows found but not
|
|
reporting due to search views etc. */
|
|
if (prev_rec != NULL && !prebuilt->innodb_api &&
|
|
prebuilt->m_mysql_handler->end_range != NULL &&
|
|
prebuilt->idx_cond == false && end_loop >= 100) {
|
|
dict_index_t *key_index = prebuilt->index;
|
|
|
|
if (end_range_cache == NULL) {
|
|
end_range_cache =
|
|
static_cast<byte *>(ut_malloc_nokey(prebuilt->mysql_row_len));
|
|
}
|
|
|
|
if (clust_templ_for_sec) {
|
|
/** Secondary index record but the template
|
|
based on PK. */
|
|
key_index = clust_index;
|
|
}
|
|
|
|
/** Create offsets based on prebuilt index. */
|
|
offsets = rec_get_offsets(prev_rec, prebuilt->index, offsets,
|
|
ULINT_UNDEFINED, &heap);
|
|
|
|
if (row_sel_store_mysql_rec(end_range_cache, prebuilt, prev_rec,
|
|
prev_vrow, clust_templ_for_sec, key_index,
|
|
offsets, clust_templ_for_sec,
|
|
prebuilt->get_lob_undo(), nullptr)) {
|
|
if (row_search_end_range_check(end_range_cache, prev_rec, prebuilt,
|
|
clust_templ_for_sec, offsets,
|
|
record_buffer)) {
|
|
/** In case of prebuilt->fetch,
|
|
set the error in prebuilt->end_range. */
|
|
if (next_buf != nullptr) {
|
|
prebuilt->m_end_range = true;
|
|
}
|
|
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto normal_return;
|
|
}
|
|
}
|
|
DEBUG_SYNC_C("allow_insert");
|
|
}
|
|
|
|
if (set_also_gap_locks && !trx->skip_gap_locks() &&
|
|
prebuilt->select_lock_type != LOCK_NONE &&
|
|
!dict_index_is_spatial(index)) {
|
|
/* Try to place a lock on the index record */
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap);
|
|
err = sel_set_rec_lock(pcur, rec, index, offsets, prebuilt->select_mode,
|
|
prebuilt->select_lock_type, LOCK_ORDINARY, thr,
|
|
&mtr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
err = DB_SUCCESS;
|
|
case DB_SUCCESS:
|
|
break;
|
|
case DB_SKIP_LOCKED:
|
|
case DB_LOCK_NOWAIT:
|
|
ut_ad(0);
|
|
default:
|
|
goto lock_wait_or_error;
|
|
}
|
|
DEBUG_SYNC_C("allow_insert");
|
|
}
|
|
|
|
/* A page supremum record cannot be in the result set: skip
|
|
it now that we have placed a possible lock on it */
|
|
|
|
prev_rec = NULL;
|
|
goto next_rec;
|
|
}
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/* Do sanity checks in case our cursor has bumped into page
|
|
corruption */
|
|
|
|
if (comp) {
|
|
next_offs = rec_get_next_offs(rec, TRUE);
|
|
if (UNIV_UNLIKELY(next_offs < PAGE_NEW_SUPREMUM)) {
|
|
goto wrong_offs;
|
|
}
|
|
} else {
|
|
next_offs = rec_get_next_offs(rec, FALSE);
|
|
if (UNIV_UNLIKELY(next_offs < PAGE_OLD_SUPREMUM)) {
|
|
goto wrong_offs;
|
|
}
|
|
}
|
|
|
|
if (UNIV_UNLIKELY(next_offs >= UNIV_PAGE_SIZE - PAGE_DIR)) {
|
|
wrong_offs:
|
|
if (srv_force_recovery == 0 || moves_up == FALSE) {
|
|
ib::error(ER_IB_MSG_1032)
|
|
<< "Rec address " << static_cast<const void *>(rec)
|
|
<< ", buf block fix count "
|
|
<< btr_cur_get_block(btr_pcur_get_btr_cur(pcur))->page.buf_fix_count;
|
|
|
|
ib::error(ER_IB_MSG_1033)
|
|
<< "Index corruption: rec offs " << page_offset(rec) << " next offs "
|
|
<< next_offs << ", page no " << page_get_page_no(page_align(rec))
|
|
<< ", index " << index->name << " of table " << index->table->name
|
|
<< ". Run CHECK TABLE. You may need to"
|
|
" restore from a backup, or dump + drop +"
|
|
" reimport the table.";
|
|
ut_ad(0);
|
|
err = DB_CORRUPTION;
|
|
|
|
goto lock_wait_or_error;
|
|
} else {
|
|
/* The user may be dumping a corrupt table. Jump
|
|
over the corruption to recover as much as possible. */
|
|
|
|
ib::info(ER_IB_MSG_1034)
|
|
<< "Index corruption: rec offs " << page_offset(rec) << " next offs "
|
|
<< next_offs << ", page no " << page_get_page_no(page_align(rec))
|
|
<< ", index " << index->name << " of table " << index->table->name
|
|
<< ". We try to skip the rest of the page.";
|
|
|
|
btr_pcur_move_to_last_on_page(pcur, &mtr);
|
|
|
|
prev_rec = NULL;
|
|
goto next_rec;
|
|
}
|
|
}
|
|
/*-------------------------------------------------------------*/
|
|
|
|
/* Calculate the 'offsets' associated with 'rec' */
|
|
|
|
ut_ad(fil_page_index_page_check(btr_pcur_get_page(pcur)));
|
|
ut_ad(btr_page_get_index_id(btr_pcur_get_page(pcur)) == index->id);
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap);
|
|
|
|
if (UNIV_UNLIKELY(srv_force_recovery > 0)) {
|
|
if (!rec_validate(rec, offsets) ||
|
|
!btr_index_rec_validate(rec, index, FALSE)) {
|
|
ib::info(ER_IB_MSG_1035)
|
|
<< "Index corruption: rec offs " << page_offset(rec) << " next offs "
|
|
<< next_offs << ", page no " << page_get_page_no(page_align(rec))
|
|
<< ", index " << index->name << " of table " << index->table->name
|
|
<< ". We try to skip the record.";
|
|
|
|
prev_rec = NULL;
|
|
goto next_rec;
|
|
}
|
|
}
|
|
|
|
prev_rec = rec;
|
|
|
|
/* Note that we cannot trust the up_match value in the cursor at this
|
|
place because we can arrive here after moving the cursor! Thus
|
|
we have to recompare rec and search_tuple to determine if they
|
|
match enough. */
|
|
|
|
if (match_mode == ROW_SEL_EXACT) {
|
|
/* Test if the index record matches completely to search_tuple
|
|
in prebuilt: if not, then we return with DB_RECORD_NOT_FOUND */
|
|
|
|
/* fputs("Comparing rec and search tuple\n", stderr); */
|
|
|
|
if (0 != cmp_dtuple_rec(search_tuple, rec, index, offsets)) {
|
|
if (set_also_gap_locks && !trx->skip_gap_locks() &&
|
|
prebuilt->select_lock_type != LOCK_NONE &&
|
|
!dict_index_is_spatial(index)) {
|
|
err = sel_set_rec_lock(pcur, rec, index, offsets, prebuilt->select_mode,
|
|
prebuilt->select_lock_type, LOCK_GAP, thr, &mtr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
case DB_SUCCESS:
|
|
break;
|
|
case DB_SKIP_LOCKED:
|
|
case DB_LOCK_NOWAIT:
|
|
ut_ad(0);
|
|
default:
|
|
goto lock_wait_or_error;
|
|
}
|
|
}
|
|
|
|
btr_pcur_store_position(pcur, &mtr);
|
|
|
|
/* The found record was not a match, but may be used
|
|
as NEXT record (index_next). Set the relative position
|
|
to BTR_PCUR_BEFORE, to reflect that the position of
|
|
the persistent cursor is before the found/stored row
|
|
(pcur->m_old_rec). */
|
|
ut_ad(pcur->m_rel_pos == BTR_PCUR_ON);
|
|
pcur->m_rel_pos = BTR_PCUR_BEFORE;
|
|
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto normal_return;
|
|
}
|
|
|
|
} else if (match_mode == ROW_SEL_EXACT_PREFIX) {
|
|
if (!cmp_dtuple_is_prefix_of_rec(search_tuple, rec, index, offsets)) {
|
|
if (set_also_gap_locks && !trx->skip_gap_locks() &&
|
|
prebuilt->select_lock_type != LOCK_NONE &&
|
|
!dict_index_is_spatial(index)) {
|
|
err = sel_set_rec_lock(pcur, rec, index, offsets, prebuilt->select_mode,
|
|
prebuilt->select_lock_type, LOCK_GAP, thr, &mtr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
case DB_SUCCESS:
|
|
break;
|
|
case DB_SKIP_LOCKED:
|
|
case DB_LOCK_NOWAIT:
|
|
ut_ad(0);
|
|
default:
|
|
goto lock_wait_or_error;
|
|
}
|
|
}
|
|
|
|
btr_pcur_store_position(pcur, &mtr);
|
|
|
|
/* The found record was not a match, but may be used
|
|
as NEXT record (index_next). Set the relative position
|
|
to BTR_PCUR_BEFORE, to reflect that the position of
|
|
the persistent cursor is before the found/stored row
|
|
(pcur->old_rec). */
|
|
ut_ad(pcur->m_rel_pos == BTR_PCUR_ON);
|
|
pcur->m_rel_pos = BTR_PCUR_BEFORE;
|
|
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto normal_return;
|
|
}
|
|
}
|
|
|
|
/* We are ready to look at a possible new index entry in the result
|
|
set: the cursor is now placed on a user record */
|
|
|
|
if (prebuilt->select_lock_type != LOCK_NONE) {
|
|
auto row_to_range_relation = row_compare_row_to_range(
|
|
set_also_gap_locks, trx, unique_search, index, clust_index, rec, comp,
|
|
mode, direction, search_tuple, offsets, moves_up, prebuilt);
|
|
|
|
ulint lock_type;
|
|
if (row_to_range_relation.row_can_be_in_range) {
|
|
if (row_to_range_relation.gap_can_intersect_range) {
|
|
lock_type = LOCK_ORDINARY;
|
|
} else {
|
|
lock_type = LOCK_REC_NOT_GAP;
|
|
}
|
|
} else {
|
|
if (row_to_range_relation.gap_can_intersect_range) {
|
|
lock_type = LOCK_GAP;
|
|
} else {
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto normal_return;
|
|
}
|
|
}
|
|
|
|
err = sel_set_rec_lock(pcur, rec, index, offsets, prebuilt->select_mode,
|
|
prebuilt->select_lock_type, lock_type, thr, &mtr);
|
|
|
|
switch (err) {
|
|
const rec_t *old_vers;
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
if (trx->allow_semi_consistent()) {
|
|
/* Note that a record of
|
|
prebuilt->index was locked. */
|
|
ut_ad(!prebuilt->new_rec_lock[row_prebuilt_t::LOCK_PCUR]);
|
|
prebuilt->new_rec_lock[row_prebuilt_t::LOCK_PCUR] = true;
|
|
}
|
|
err = DB_SUCCESS;
|
|
// Fall through
|
|
case DB_SUCCESS:
|
|
if (row_to_range_relation.row_must_be_at_end) {
|
|
prebuilt->m_stop_tuple_found = true;
|
|
}
|
|
break;
|
|
case DB_SKIP_LOCKED:
|
|
goto next_rec;
|
|
case DB_LOCK_WAIT:
|
|
/* Lock wait for R-tree should already
|
|
be handled in sel_set_rtr_rec_lock() */
|
|
ut_ad(!dict_index_is_spatial(index));
|
|
/* Never unlock rows that were part of a conflict. */
|
|
std::fill_n(prebuilt->new_rec_lock, row_prebuilt_t::LOCK_COUNT, false);
|
|
|
|
if (UNIV_LIKELY(prebuilt->row_read_type !=
|
|
ROW_READ_TRY_SEMI_CONSISTENT) ||
|
|
unique_search || index != clust_index) {
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
/* The following call returns 'offsets' associated with 'old_vers' */
|
|
row_sel_build_committed_vers_for_mysql(clust_index, prebuilt, rec,
|
|
&offsets, &heap, &old_vers,
|
|
need_vrow ? &vrow : NULL, &mtr);
|
|
|
|
/* Check whether it was a deadlock or not, if not
|
|
a deadlock and the transaction had to wait then
|
|
release the lock it is waiting on. */
|
|
|
|
DEBUG_SYNC_C("semi_consistent_read_would_wait");
|
|
err = lock_trx_handle_wait(trx);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS:
|
|
/* The lock was granted while we were
|
|
searching for the last committed version.
|
|
Do a normal locking read. */
|
|
|
|
offsets =
|
|
rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap);
|
|
goto locks_ok;
|
|
case DB_DEADLOCK:
|
|
goto lock_wait_or_error;
|
|
case DB_LOCK_WAIT:
|
|
ut_ad(!dict_index_is_spatial(index));
|
|
err = DB_SUCCESS;
|
|
break;
|
|
default:
|
|
ut_error;
|
|
}
|
|
|
|
if (old_vers == NULL) {
|
|
/* The row was not yet committed */
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
did_semi_consistent_read = TRUE;
|
|
rec = old_vers;
|
|
prev_rec = rec;
|
|
break;
|
|
case DB_RECORD_NOT_FOUND:
|
|
if (dict_index_is_spatial(index)) {
|
|
goto next_rec;
|
|
} else {
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
default:
|
|
|
|
goto lock_wait_or_error;
|
|
}
|
|
locks_ok:
|
|
if (err == DB_SUCCESS && !row_to_range_relation.row_can_be_in_range) {
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto normal_return;
|
|
}
|
|
} else {
|
|
/* This is a non-locking consistent read: if necessary, fetch
|
|
a previous version of the record */
|
|
|
|
if (trx->isolation_level == TRX_ISO_READ_UNCOMMITTED) {
|
|
/* Do nothing: we let a non-locking SELECT read the
|
|
latest version of the record */
|
|
|
|
} else if (index == clust_index) {
|
|
/* Fetch a previous version of the row if the current
|
|
one is not visible in the snapshot; if we have a very
|
|
high force recovery level set, we try to avoid crashes
|
|
by skipping this lookup */
|
|
|
|
if (trx_get_vision(trx)->is_asof_gcn()) {
|
|
dberr_t gp_error = DB_SUCCESS;
|
|
bool see = lizard::gp_clust_rec_cons_read_sees(
|
|
trx, rec, index, offsets, pcur, trx_get_vision(trx), &gp_error);
|
|
if (gp_error != DB_SUCCESS) {
|
|
err = gp_error;
|
|
goto lock_wait_or_error;
|
|
} else {
|
|
if (!see) {
|
|
rec_t *old_vers;
|
|
/* The following call returns 'offsets' associated with 'old_vers'
|
|
*/
|
|
err = row_sel_build_prev_vers_for_mysql(
|
|
&trx->vision, clust_index, prebuilt, rec, &offsets, &heap,
|
|
&old_vers, need_vrow ? &vrow : NULL, &mtr,
|
|
prebuilt->get_lob_undo());
|
|
|
|
if (err != DB_SUCCESS) {
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
if (old_vers == NULL) {
|
|
/* The row did not exist yet in
|
|
the read view */
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
rec = old_vers;
|
|
prev_rec = rec;
|
|
}
|
|
}
|
|
} else if (srv_force_recovery < 5 &&
|
|
!lock_clust_rec_cons_read_sees(rec, index, offsets, pcur,
|
|
trx_get_vision(trx))) {
|
|
rec_t *old_vers;
|
|
/* The following call returns 'offsets' associated with 'old_vers' */
|
|
err = row_sel_build_prev_vers_for_mysql(
|
|
&trx->vision, clust_index, prebuilt, rec, &offsets, &heap,
|
|
&old_vers, need_vrow ? &vrow : NULL, &mtr,
|
|
prebuilt->get_lob_undo());
|
|
|
|
if (err != DB_SUCCESS) {
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
if (old_vers == NULL) {
|
|
/* The row did not exist yet in
|
|
the read view */
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
rec = old_vers;
|
|
prev_rec = rec;
|
|
}
|
|
} else {
|
|
/* We are looking into a non-clustered index,
|
|
and to get the right version of the record we
|
|
have to look also into the clustered index: this
|
|
is necessary, because we can only get the undo
|
|
information via the clustered index record. */
|
|
|
|
ut_ad(!index->is_clustered());
|
|
|
|
if (!srv_read_only_mode &&
|
|
!lock_sec_rec_cons_read_sees(rec, index, &trx->vision)) {
|
|
/* We should look at the clustered index.
|
|
However, as this is a non-locking read,
|
|
we can skip the clustered index lookup if
|
|
the condition does not match the secondary
|
|
index entry. */
|
|
switch (row_search_idx_cond_check(buf, prebuilt, rec, offsets)) {
|
|
case ICP_NO_MATCH:
|
|
goto next_rec;
|
|
case ICP_OUT_OF_RANGE:
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto idx_cond_failed;
|
|
case ICP_MATCH:
|
|
goto requires_clust_rec;
|
|
}
|
|
|
|
ut_error;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* NOTE that at this point rec can be an old version of a clustered
|
|
index record built for a consistent read. We cannot assume after this
|
|
point that rec is on a buffer pool page. Functions like
|
|
page_rec_is_comp() cannot be used! */
|
|
|
|
if (rec_get_deleted_flag(rec, comp)) {
|
|
/* The record is delete-marked: we can skip it */
|
|
if (!prebuilt->table->is_temporary()) prebuilt->rds_rows_read_del_mark++;
|
|
|
|
if (trx->allow_semi_consistent() &&
|
|
prebuilt->select_lock_type != LOCK_NONE && !did_semi_consistent_read) {
|
|
/* No need to keep a lock on a delete-marked record
|
|
if we do not want to use next-key locking. */
|
|
|
|
row_unlock_for_mysql(prebuilt, TRUE);
|
|
}
|
|
|
|
/* This is an optimization to skip setting the next key lock
|
|
on the record that follows this delete-marked record. This
|
|
optimization works because of the unique search criteria
|
|
which precludes the presence of a range lock between this
|
|
delete marked record and the record following it.
|
|
|
|
For now this is applicable only to clustered indexes while
|
|
doing a unique search except for HANDLER queries because
|
|
HANDLER allows NEXT and PREV even in unique search on
|
|
clustered index. There is scope for further optimization
|
|
applicable to unique secondary indexes. Current behaviour is
|
|
to widen the scope of a lock on an already delete marked record
|
|
if the same record is deleted twice by the same transaction */
|
|
if (index == clust_index && unique_search && !prebuilt->used_in_HANDLER) {
|
|
err = DB_RECORD_NOT_FOUND;
|
|
|
|
goto normal_return;
|
|
}
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
/* Check if the record matches the index condition. */
|
|
switch (row_search_idx_cond_check(buf, prebuilt, rec, offsets)) {
|
|
case ICP_NO_MATCH:
|
|
if (did_semi_consistent_read) {
|
|
row_unlock_for_mysql(prebuilt, TRUE);
|
|
}
|
|
goto next_rec;
|
|
case ICP_OUT_OF_RANGE:
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto idx_cond_failed;
|
|
case ICP_MATCH:
|
|
break;
|
|
}
|
|
|
|
/* Get the clustered index record if needed, if we did not do the
|
|
search using the clustered index. */
|
|
|
|
if (index != clust_index && prebuilt->need_to_access_clustered) {
|
|
requires_clust_rec:
|
|
ut_ad(index != clust_index);
|
|
/* We use a 'goto' to the preceding label if a consistent
|
|
read of a secondary index record requires us to look up old
|
|
versions of the associated clustered index record. */
|
|
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
|
|
/* It was a non-clustered index and we must fetch also the
|
|
clustered index record */
|
|
|
|
mtr_has_extra_clust_latch = TRUE;
|
|
|
|
ut_ad(!vrow);
|
|
|
|
/* The following call returns 'offsets' associated with
|
|
'clust_rec'. Note that 'clust_rec' can be an old version
|
|
built for a consistent read. */
|
|
err = row_sel_get_clust_rec_for_mysql(
|
|
prebuilt, index, rec, thr, &clust_rec, &offsets, &heap,
|
|
need_vrow ? &vrow : NULL, &mtr, prebuilt->get_lob_undo());
|
|
switch (err) {
|
|
case DB_SUCCESS:
|
|
if (clust_rec == NULL) {
|
|
/* The record did not exist in the read view */
|
|
ut_ad(prebuilt->select_lock_type == LOCK_NONE ||
|
|
dict_index_is_spatial(index));
|
|
|
|
goto next_rec;
|
|
}
|
|
break;
|
|
case DB_SKIP_LOCKED:
|
|
goto next_rec;
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
ut_a(clust_rec != NULL);
|
|
if (trx->allow_semi_consistent()) {
|
|
/* Note that the clustered index record
|
|
was locked. */
|
|
ut_ad(!prebuilt->new_rec_lock[row_prebuilt_t::LOCK_CLUST_PCUR]);
|
|
prebuilt->new_rec_lock[row_prebuilt_t::LOCK_CLUST_PCUR] = true;
|
|
}
|
|
err = DB_SUCCESS;
|
|
break;
|
|
default:
|
|
vrow = NULL;
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
if (rec_get_deleted_flag(clust_rec, comp)) {
|
|
/* The record is delete marked: we can skip it */
|
|
|
|
if (!prebuilt->table->is_temporary()) prebuilt->rds_rows_read_del_mark++;
|
|
if (trx->allow_semi_consistent() &&
|
|
prebuilt->select_lock_type != LOCK_NONE) {
|
|
/* No need to keep a lock on a delete-marked
|
|
record if we do not want to use next-key
|
|
locking. */
|
|
|
|
row_unlock_for_mysql(prebuilt, TRUE);
|
|
}
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
if (need_vrow && !vrow) {
|
|
if (!heap) {
|
|
heap = mem_heap_create(100);
|
|
}
|
|
row_sel_fill_vrow(rec, index, &vrow, heap);
|
|
}
|
|
|
|
result_rec = clust_rec;
|
|
ut_ad(rec_offs_validate(result_rec, clust_index, offsets));
|
|
|
|
if (prebuilt->idx_cond) {
|
|
/* Convert the record to MySQL format. We were
|
|
unable to do this in row_search_idx_cond_check(),
|
|
because the condition is on the secondary index
|
|
and the requested column is in the clustered index.
|
|
We convert all fields, including those that
|
|
may have been used in ICP, because the
|
|
secondary index may contain a column prefix
|
|
rather than the full column. Also, as noted
|
|
in Bug #56680, the column in the secondary
|
|
index may be in the wrong case, and the
|
|
authoritative case is in result_rec, the
|
|
appropriate version of the clustered index record. */
|
|
if (!row_sel_store_mysql_rec(buf, prebuilt, result_rec, vrow, TRUE,
|
|
clust_index, offsets, false, nullptr,
|
|
nullptr)) {
|
|
goto next_rec;
|
|
}
|
|
}
|
|
|
|
/* TODO: This is for a temporary fix, will be removed later */
|
|
/* Check duplicate rec for spatial index. */
|
|
if (dict_index_is_spatial(index) && rec_get_deleted_flag(rec, comp) &&
|
|
prebuilt->rtr_info->is_dup) {
|
|
dtuple_t *clust_row;
|
|
row_ext_t *ext = nullptr;
|
|
rtr_mbr_t clust_mbr;
|
|
rtr_mbr_t index_mbr;
|
|
ulint *index_offsets;
|
|
const dtuple_t *index_entry;
|
|
bool *is_dup_rec = prebuilt->rtr_info->is_dup;
|
|
|
|
*is_dup_rec = false;
|
|
|
|
if (!heap) {
|
|
heap = mem_heap_create(100);
|
|
}
|
|
|
|
clust_row = row_build(ROW_COPY_DATA, clust_index, clust_rec, offsets,
|
|
NULL, NULL, NULL, &ext, heap);
|
|
index_entry = row_build_index_entry(clust_row, ext, index, heap);
|
|
rtr_get_mbr_from_tuple(index_entry, &clust_mbr);
|
|
|
|
index_offsets = rec_get_offsets(rec, index, NULL, ULINT_UNDEFINED, &heap);
|
|
rtr_get_mbr_from_rec(rec, index_offsets, &index_mbr);
|
|
|
|
if (mbr_equal_cmp(index->rtr_srs.get(), &clust_mbr, &index_mbr)) {
|
|
*is_dup_rec = true;
|
|
}
|
|
}
|
|
} else {
|
|
result_rec = rec;
|
|
}
|
|
|
|
/* We found a qualifying record 'result_rec'. At this point,
|
|
'offsets' are associated with 'result_rec'. */
|
|
|
|
ut_ad(rec_offs_validate(result_rec, result_rec != rec ? clust_index : index,
|
|
offsets));
|
|
ut_ad(!rec_get_deleted_flag(result_rec, comp));
|
|
|
|
/* If we cannot prefetch records, we should not have a record buffer.
|
|
See ha_innobase::ha_is_record_buffer_wanted(). */
|
|
ut_ad(prebuilt->can_prefetch_records() || record_buffer == nullptr);
|
|
|
|
/* Decide whether to prefetch extra rows.
|
|
At this point, the clustered index record is protected
|
|
by a page latch that was acquired when pcur was positioned.
|
|
The latch will not be released until mtr_commit(&mtr). */
|
|
|
|
if (record_buffer != nullptr ||
|
|
((match_mode == ROW_SEL_EXACT ||
|
|
prebuilt->n_rows_fetched >= MYSQL_FETCH_CACHE_THRESHOLD) &&
|
|
prebuilt->can_prefetch_records())) {
|
|
/* Inside an update, for example, we do not cache rows,
|
|
since we may use the cursor position to do the actual
|
|
update, that is why we require ...lock_type == LOCK_NONE.
|
|
Since we keep space in prebuilt only for the BLOBs of
|
|
a single row, we cannot cache rows in the case there
|
|
are BLOBs in the fields to be fetched. In HANDLER (note:
|
|
the HANDLER statement, not the handler class) we do
|
|
not cache rows because there the cursor is a scrollable
|
|
cursor. */
|
|
|
|
const auto max_rows_to_cache =
|
|
record_buffer ? record_buffer->max_records() : MYSQL_FETCH_CACHE_SIZE;
|
|
ut_a(prebuilt->n_fetch_cached < max_rows_to_cache);
|
|
|
|
/* We only convert from InnoDB row format to MySQL row
|
|
format when ICP is disabled. */
|
|
|
|
if (!prebuilt->idx_cond) {
|
|
/* We use next_buf to track the allocation of buffers
|
|
where we store and enqueue the buffers for our
|
|
pre-fetch optimisation.
|
|
|
|
If next_buf == 0 then we store the converted record
|
|
directly into the MySQL record buffer (buf). If it is
|
|
!= 0 then we allocate a pre-fetch buffer and store the
|
|
converted record there.
|
|
|
|
If the conversion fails and the MySQL record buffer
|
|
was not written to then we reset next_buf so that
|
|
we can re-use the MySQL record buffer in the next
|
|
iteration. */
|
|
byte *prev_buf = next_buf;
|
|
|
|
next_buf = next_buf ? row_sel_fetch_last_buf(prebuilt) : buf;
|
|
|
|
if (!row_sel_store_mysql_rec(next_buf, prebuilt, result_rec, vrow,
|
|
result_rec != rec,
|
|
result_rec != rec ? clust_index : index,
|
|
offsets, false, nullptr, nullptr)) {
|
|
if (next_buf == buf) {
|
|
ut_a(prebuilt->n_fetch_cached == 0);
|
|
next_buf = 0;
|
|
}
|
|
|
|
/* Only fresh inserts may contain incomplete
|
|
externally stored columns. Pretend that such
|
|
records do not exist. Such records may only be
|
|
accessed at the READ UNCOMMITTED isolation
|
|
level or when rolling back a recovered
|
|
transaction. Rollback happens at a lower
|
|
level, not here. */
|
|
goto next_rec;
|
|
}
|
|
|
|
/* If we are filling a server-provided buffer, and the
|
|
server has pushed down an end range condition, evaluate
|
|
the condition to prevent that we read too many rows. */
|
|
if (record_buffer != nullptr &&
|
|
prebuilt->m_mysql_handler->end_range != nullptr) {
|
|
/* If the end-range condition refers to a
|
|
virtual column and we are reading from the
|
|
clustered index, next_buf does not have the
|
|
value of the virtual column. Get the offsets in
|
|
the secondary index so that we can read the
|
|
virtual column from the index. */
|
|
if (clust_templ_for_sec &&
|
|
prebuilt->m_mysql_handler->m_virt_gcol_in_end_range) {
|
|
if (sec_offsets == nullptr) {
|
|
rec_offs_init(sec_offsets_);
|
|
sec_offsets = sec_offsets_;
|
|
}
|
|
sec_offsets =
|
|
rec_get_offsets(rec, index, sec_offsets, ULINT_UNDEFINED, &heap);
|
|
}
|
|
|
|
if (row_search_end_range_check(next_buf, rec, prebuilt,
|
|
clust_templ_for_sec, sec_offsets,
|
|
record_buffer)) {
|
|
if (next_buf != buf) {
|
|
record_buffer->remove_last();
|
|
}
|
|
next_buf = prev_buf;
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto normal_return;
|
|
}
|
|
}
|
|
|
|
if (next_buf != buf) {
|
|
row_sel_enqueue_cache_row_for_mysql(next_buf, prebuilt);
|
|
}
|
|
} else {
|
|
row_sel_enqueue_cache_row_for_mysql(buf, prebuilt);
|
|
}
|
|
|
|
if (prebuilt->n_fetch_cached < max_rows_to_cache) {
|
|
goto next_rec;
|
|
}
|
|
|
|
} else {
|
|
/* We cannot use a record buffer for this scan, so assert that
|
|
we don't have one. If we have a record buffer here,
|
|
ha_innobase::is_record_buffer_wanted() should be updated so
|
|
that a buffer is not allocated unnecessarily. */
|
|
ut_ad(record_buffer == nullptr);
|
|
|
|
if (UNIV_UNLIKELY(prebuilt->template_type == ROW_MYSQL_DUMMY_TEMPLATE)) {
|
|
/* CHECK TABLE: fetch the row */
|
|
|
|
if (result_rec != rec && !prebuilt->need_to_access_clustered) {
|
|
/* We used 'offsets' for the clust
|
|
rec, recalculate them for 'rec' */
|
|
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap);
|
|
result_rec = rec;
|
|
}
|
|
|
|
memcpy(buf + 4, result_rec - rec_offs_extra_size(offsets),
|
|
rec_offs_size(offsets));
|
|
mach_write_to_4(buf, rec_offs_extra_size(offsets) + 4);
|
|
} else if (!prebuilt->idx_cond && !prebuilt->innodb_api) {
|
|
/* The record was not yet converted to MySQL format. */
|
|
if (!row_sel_store_mysql_rec(
|
|
buf, prebuilt, result_rec, vrow, result_rec != rec,
|
|
result_rec != rec ? clust_index : index, offsets, false,
|
|
prebuilt->get_lob_undo(), nullptr)) {
|
|
/* Only fresh inserts may contain
|
|
incomplete externally stored
|
|
columns. Pretend that such records do
|
|
not exist. Such records may only be
|
|
accessed at the READ UNCOMMITTED
|
|
isolation level or when rolling back a
|
|
recovered transaction. Rollback
|
|
happens at a lower level, not here. */
|
|
goto next_rec;
|
|
}
|
|
}
|
|
|
|
if (prebuilt->clust_index_was_generated) {
|
|
row_sel_store_row_id_to_prebuilt(prebuilt, result_rec,
|
|
result_rec == rec ? index : clust_index,
|
|
offsets);
|
|
}
|
|
}
|
|
|
|
/* From this point on, 'offsets' are invalid. */
|
|
|
|
/* We have an optimization to save CPU time: if this is a consistent
|
|
read on a unique condition on the clustered index, then we do not
|
|
store the pcur position, because any fetch next or prev will anyway
|
|
return 'end of file'. Exceptions are locking reads and the MySQL
|
|
HANDLER command where the user can move the cursor with PREV or NEXT
|
|
even after a unique search. */
|
|
|
|
err = DB_SUCCESS;
|
|
|
|
idx_cond_failed:
|
|
if (!unique_search || !index->is_clustered() || direction != 0 ||
|
|
prebuilt->select_lock_type != LOCK_NONE || prebuilt->used_in_HANDLER ||
|
|
prebuilt->innodb_api) {
|
|
/* Inside an update always store the cursor position */
|
|
|
|
if (!spatial_search) {
|
|
btr_pcur_store_position(pcur, &mtr);
|
|
}
|
|
|
|
if (prebuilt->innodb_api && (btr_pcur_get_rec(pcur) != result_rec)) {
|
|
ulint rec_size = rec_offs_size(offsets);
|
|
if (!prebuilt->innodb_api_rec_size ||
|
|
(prebuilt->innodb_api_rec_size < rec_size)) {
|
|
prebuilt->innodb_api_buf = static_cast<byte *>(
|
|
mem_heap_alloc(prebuilt->cursor_heap, rec_size));
|
|
prebuilt->innodb_api_rec_size = rec_size;
|
|
}
|
|
prebuilt->innodb_api_rec =
|
|
rec_copy(prebuilt->innodb_api_buf, result_rec, offsets);
|
|
}
|
|
}
|
|
|
|
goto normal_return;
|
|
|
|
next_rec:
|
|
|
|
if (end_loop >= 99 && need_vrow && vrow == NULL && prev_rec != NULL) {
|
|
if (!heap) {
|
|
heap = mem_heap_create(100);
|
|
}
|
|
|
|
prev_vrow = NULL;
|
|
row_sel_fill_vrow(prev_rec, index, &prev_vrow, heap);
|
|
} else {
|
|
prev_vrow = vrow;
|
|
}
|
|
|
|
end_loop++;
|
|
|
|
/* Reset the old and new "did semi-consistent read" flags. */
|
|
if (UNIV_UNLIKELY(prebuilt->row_read_type == ROW_READ_DID_SEMI_CONSISTENT)) {
|
|
prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT;
|
|
}
|
|
did_semi_consistent_read = FALSE;
|
|
std::fill_n(prebuilt->new_rec_lock, row_prebuilt_t::LOCK_COUNT, false);
|
|
|
|
vrow = NULL;
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/* PHASE 5: Move the cursor to the next index record */
|
|
|
|
/* NOTE: For moves_up==FALSE, the mini-transaction will be
|
|
committed and restarted every time when switching b-tree
|
|
pages. For moves_up==TRUE in index condition pushdown, we can
|
|
scan an entire secondary index tree within a single
|
|
mini-transaction. As long as the prebuilt->idx_cond does not
|
|
match, we do not need to consult the clustered index or
|
|
return records to MySQL, and thus we can avoid repositioning
|
|
the cursor. What prevents us from buffer-fixing all leaf pages
|
|
within the mini-transaction is the btr_leaf_page_release()
|
|
call in btr_pcur_move_to_next_page(). Only the leaf page where
|
|
the cursor is positioned will remain buffer-fixed.
|
|
For R-tree spatial search, we also commit the mini-transaction
|
|
each time */
|
|
|
|
if (mtr_has_extra_clust_latch || spatial_search) {
|
|
/* If we have extra cluster latch, we must commit
|
|
mtr if we are moving to the next non-clustered
|
|
index record, because we could break the latching
|
|
order if we would access a different clustered
|
|
index page right away without releasing the previous. */
|
|
|
|
/* No need to do store restore for R-tree */
|
|
if (!spatial_search) {
|
|
btr_pcur_store_position(pcur, &mtr);
|
|
}
|
|
|
|
mtr_commit(&mtr);
|
|
mtr_has_extra_clust_latch = FALSE;
|
|
|
|
mtr_start(&mtr);
|
|
|
|
if (!spatial_search &&
|
|
sel_restore_position_for_mysql(&same_user_rec, BTR_SEARCH_LEAF, pcur,
|
|
prebuilt, moves_up, &mtr)) {
|
|
goto rec_loop;
|
|
}
|
|
}
|
|
|
|
if (moves_up) {
|
|
bool move;
|
|
|
|
if (spatial_search) {
|
|
move = rtr_pcur_move_to_next(search_tuple, mode, prebuilt->select_mode,
|
|
pcur, 0, &mtr);
|
|
} else if (prebuilt->sample->enabled) {
|
|
move = btr_sample_pcur_next(prebuilt->sample, &mtr);
|
|
} else {
|
|
move = btr_pcur_move_to_next(pcur, &mtr);
|
|
}
|
|
|
|
if (!move) {
|
|
not_moved:
|
|
if (!spatial_search) {
|
|
btr_pcur_store_position(pcur, &mtr);
|
|
}
|
|
|
|
if (match_mode != 0) {
|
|
err = DB_RECORD_NOT_FOUND;
|
|
} else {
|
|
err = DB_END_OF_INDEX;
|
|
}
|
|
|
|
goto normal_return;
|
|
}
|
|
} else {
|
|
if (UNIV_UNLIKELY(!btr_pcur_move_to_prev(pcur, &mtr))) {
|
|
goto not_moved;
|
|
}
|
|
}
|
|
|
|
goto rec_loop;
|
|
|
|
lock_wait_or_error:
|
|
/* Reset the old and new "did semi-consistent read" flags. */
|
|
if (UNIV_UNLIKELY(prebuilt->row_read_type == ROW_READ_DID_SEMI_CONSISTENT)) {
|
|
prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT;
|
|
}
|
|
did_semi_consistent_read = FALSE;
|
|
|
|
/*-------------------------------------------------------------*/
|
|
if (!dict_index_is_spatial(index)) {
|
|
btr_pcur_store_position(pcur, &mtr);
|
|
}
|
|
|
|
lock_table_wait:
|
|
mtr_commit(&mtr);
|
|
mtr_has_extra_clust_latch = FALSE;
|
|
|
|
trx->error_state = err;
|
|
|
|
/* The following is a patch for MySQL */
|
|
|
|
if (thr->is_active && err != DB_GP_WAIT) {
|
|
que_thr_stop_for_mysql(thr);
|
|
}
|
|
|
|
thr->lock_state = QUE_THR_LOCK_ROW;
|
|
|
|
if (row_mysql_handle_errors(&err, trx, thr, NULL)) {
|
|
/* It was a lock wait, and it ended */
|
|
|
|
thr->lock_state = QUE_THR_LOCK_NOLOCK;
|
|
mtr_start(&mtr);
|
|
|
|
/* Table lock waited, go try to obtain table lock
|
|
again */
|
|
if (table_lock_waited) {
|
|
table_lock_waited = FALSE;
|
|
|
|
goto wait_table_again;
|
|
}
|
|
|
|
if (!dict_index_is_spatial(index)) {
|
|
sel_restore_position_for_mysql(&same_user_rec, BTR_SEARCH_LEAF, pcur,
|
|
prebuilt, moves_up, &mtr);
|
|
}
|
|
|
|
if (!same_user_rec && trx->allow_semi_consistent()) {
|
|
/* Since we were not able to restore the cursor
|
|
on the same user record, we cannot use
|
|
row_unlock_for_mysql() to unlock any records, and
|
|
we must thus reset the new rec lock info. Since
|
|
in lock0lock.cc we have blocked the inheriting of gap
|
|
X-locks, we actually do not have any new record locks
|
|
set in this case.
|
|
|
|
Note that if we were able to restore on the 'same'
|
|
user record, it is still possible that we were actually
|
|
waiting on a delete-marked record, and meanwhile
|
|
it was removed by purge and inserted again by some
|
|
other user. But that is no problem, because in
|
|
rec_loop we will again try to set a lock, and
|
|
new_rec_lock_info in trx will be right at the end. */
|
|
|
|
std::fill_n(prebuilt->new_rec_lock, row_prebuilt_t::LOCK_COUNT, false);
|
|
}
|
|
|
|
mode = pcur->m_search_mode;
|
|
|
|
goto rec_loop;
|
|
}
|
|
|
|
thr->lock_state = QUE_THR_LOCK_NOLOCK;
|
|
|
|
goto func_exit;
|
|
|
|
as_of_error:
|
|
/*-------------------------------------------------------------*/
|
|
que_thr_stop_for_mysql_no_error(thr, trx);
|
|
|
|
ut_ad(err != DB_SUCCESS);
|
|
|
|
goto func_exit;
|
|
|
|
normal_return:
|
|
/*-------------------------------------------------------------*/
|
|
que_thr_stop_for_mysql_no_error(thr, trx);
|
|
|
|
mtr_commit(&mtr);
|
|
|
|
/* Rollback blocking transactions from hit list for high priority
|
|
transaction, if any. We should not be holding latches here as
|
|
we are going to rollback the blocking transactions. */
|
|
trx_kill_blocking(trx);
|
|
|
|
DEBUG_SYNC_C("row_search_for_mysql_before_return");
|
|
|
|
if (prebuilt->idx_cond != 0) {
|
|
/* When ICP is active we don't write to the MySQL buffer
|
|
directly, only to buffers that are enqueued in the pre-fetch
|
|
queue. We need to dequeue the first buffer and copy the contents
|
|
to the record buffer that was passed in by MySQL. */
|
|
|
|
if (prebuilt->n_fetch_cached > 0) {
|
|
row_sel_dequeue_cached_row_for_mysql(buf, prebuilt);
|
|
err = DB_SUCCESS;
|
|
}
|
|
|
|
} else if (next_buf != 0) {
|
|
/* We may or may not have enqueued some buffers to the
|
|
pre-fetch queue, but we definitely wrote to the record
|
|
buffer passed to use by MySQL. */
|
|
|
|
DEBUG_SYNC_C("row_search_cached_row");
|
|
err = DB_SUCCESS;
|
|
}
|
|
|
|
#ifdef UNIV_DEBUG
|
|
if (dict_index_is_spatial(index) && err != DB_SUCCESS &&
|
|
err != DB_END_OF_INDEX && err != DB_INTERRUPTED) {
|
|
rtr_node_path_t *path = pcur->m_btr_cur.rtr_info->path;
|
|
|
|
ut_ad(path->empty());
|
|
}
|
|
#endif
|
|
|
|
func_exit:
|
|
trx->op_info = "";
|
|
|
|
if (end_range_cache != NULL) {
|
|
ut_free(end_range_cache);
|
|
}
|
|
|
|
if (heap != NULL) {
|
|
mem_heap_free(heap);
|
|
}
|
|
|
|
/* Set or reset the "did semi-consistent read" flag on return.
|
|
The flag did_semi_consistent_read is set if and only if
|
|
the record being returned was fetched with a semi-consistent read. */
|
|
ut_ad(prebuilt->row_read_type != ROW_READ_WITH_LOCKS ||
|
|
!did_semi_consistent_read);
|
|
|
|
if (prebuilt->row_read_type != ROW_READ_WITH_LOCKS) {
|
|
if (did_semi_consistent_read) {
|
|
prebuilt->row_read_type = ROW_READ_DID_SEMI_CONSISTENT;
|
|
} else {
|
|
prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT;
|
|
}
|
|
}
|
|
|
|
#ifdef UNIV_DEBUG
|
|
{
|
|
btrsea_sync_check check(trx->has_search_latch);
|
|
|
|
ut_ad(!sync_check_iterate(check));
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
DEBUG_SYNC_C("innodb_row_search_for_mysql_exit");
|
|
|
|
prebuilt->lob_undo_reset();
|
|
|
|
ut_a(!trx->has_search_latch);
|
|
|
|
lizard::row_cleanout_after_read(prebuilt);
|
|
|
|
return err;
|
|
}
|
|
|
|
/** Count rows in a R-Tree leaf level.
|
|
@return DB_SUCCESS if successful */
|
|
dberr_t row_count_rtree_recs(
|
|
row_prebuilt_t *prebuilt, /*!< in: prebuilt struct for the
|
|
table handle; this contains the info
|
|
of search_tuple, index; if search
|
|
tuple contains 0 fields then we
|
|
position the cursor at the start or
|
|
the end of the index, depending on
|
|
'mode' */
|
|
ulint *n_rows, /*!< out: number of entries
|
|
seen in the consistent read */
|
|
ulint *n_dups) /*!< out: number of dup entries */
|
|
{
|
|
dict_index_t *index = prebuilt->index;
|
|
dberr_t ret = DB_SUCCESS;
|
|
mtr_t mtr;
|
|
mem_heap_t *heap;
|
|
dtuple_t *entry;
|
|
dtuple_t *search_entry = prebuilt->search_tuple;
|
|
ulint entry_len;
|
|
ulint i;
|
|
byte *buf;
|
|
bool is_dup = false;
|
|
|
|
ut_a(dict_index_is_spatial(index));
|
|
|
|
*n_rows = 0;
|
|
*n_dups = 0;
|
|
|
|
heap = mem_heap_create(256);
|
|
|
|
/* Build a search tuple. */
|
|
entry_len = dict_index_get_n_fields(index);
|
|
entry = dtuple_create(heap, entry_len);
|
|
|
|
for (i = 0; i < entry_len; i++) {
|
|
const dict_field_t *ind_field = index->get_field(i);
|
|
const dict_col_t *col = ind_field->col;
|
|
dfield_t *dfield = dtuple_get_nth_field(entry, i);
|
|
|
|
if (i == 0) {
|
|
double *mbr;
|
|
double tmp_mbr[SPDIMS * 2];
|
|
|
|
dfield->type.mtype = DATA_GEOMETRY;
|
|
dfield->type.prtype |= DATA_GIS_MBR;
|
|
|
|
/* Allocate memory for mbr field */
|
|
mbr = static_cast<double *>(mem_heap_alloc(heap, DATA_MBR_LEN));
|
|
|
|
/* Set mbr field data. */
|
|
dfield_set_data(dfield, mbr, DATA_MBR_LEN);
|
|
|
|
for (uint j = 0; j < SPDIMS; j++) {
|
|
tmp_mbr[j * 2] = DBL_MAX;
|
|
tmp_mbr[j * 2 + 1] = -DBL_MAX;
|
|
}
|
|
dfield_write_mbr(dfield, tmp_mbr);
|
|
continue;
|
|
}
|
|
|
|
dfield->type.mtype = col->mtype;
|
|
dfield->type.prtype = col->prtype;
|
|
}
|
|
|
|
prebuilt->search_tuple = entry;
|
|
|
|
ulint bufsize = ut_max(UNIV_PAGE_SIZE, prebuilt->mysql_row_len);
|
|
buf = static_cast<byte *>(ut_malloc_nokey(bufsize));
|
|
|
|
ulint cnt = 1000;
|
|
|
|
ut_ad(!index->table->is_intrinsic());
|
|
|
|
ret = row_search_mvcc(buf, PAGE_CUR_WITHIN, prebuilt, 0, 0);
|
|
|
|
prebuilt->rtr_info->is_dup = &is_dup;
|
|
|
|
loop:
|
|
/* Check thd->killed every 1,000 scanned rows */
|
|
if (--cnt == 0) {
|
|
if (trx_is_interrupted(prebuilt->trx)) {
|
|
ret = DB_INTERRUPTED;
|
|
goto func_exit;
|
|
}
|
|
cnt = 1000;
|
|
}
|
|
|
|
switch (ret) {
|
|
case DB_SUCCESS:
|
|
break;
|
|
case DB_DEADLOCK:
|
|
case DB_LOCK_TABLE_FULL:
|
|
case DB_LOCK_WAIT_TIMEOUT:
|
|
case DB_INTERRUPTED:
|
|
goto func_exit;
|
|
default:
|
|
/* fall through (this error is ignored by CHECK TABLE) */
|
|
case DB_END_OF_INDEX:
|
|
ret = DB_SUCCESS;
|
|
func_exit:
|
|
/* This may be pointing to a local variable. */
|
|
prebuilt->rtr_info->is_dup = nullptr;
|
|
|
|
prebuilt->search_tuple = search_entry;
|
|
ut_free(buf);
|
|
mem_heap_free(heap);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
*n_rows = *n_rows + 1;
|
|
if (is_dup) {
|
|
*n_dups = *n_dups + 1;
|
|
is_dup = false;
|
|
}
|
|
|
|
ret = row_search_mvcc(buf, PAGE_CUR_WITHIN, prebuilt, 0, ROW_SEL_NEXT);
|
|
|
|
goto loop;
|
|
}
|
|
|
|
/** Read the AUTOINC column from the current row. If the value is less than
|
|
0 and the type is not unsigned then we reset the value to 0.
|
|
@return value read from the column */
|
|
static ib_uint64_t row_search_autoinc_read_column(
|
|
dict_index_t *index, /*!< in: index to read from */
|
|
const rec_t *rec, /*!< in: current rec */
|
|
ulint col_no, /*!< in: column number */
|
|
ulint mtype, /*!< in: column main type */
|
|
ibool unsigned_type) /*!< in: signed or unsigned flag */
|
|
{
|
|
ulint len;
|
|
const byte *data;
|
|
ib_uint64_t value;
|
|
mem_heap_t *heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint *offsets = offsets_;
|
|
|
|
rec_offs_init(offsets_);
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, col_no + 1, &heap);
|
|
|
|
if (rec_offs_nth_sql_null(offsets, col_no)) {
|
|
/* There is no non-NULL value in the auto-increment column. */
|
|
value = 0;
|
|
goto func_exit;
|
|
}
|
|
|
|
data = rec_get_nth_field(rec, offsets, col_no, &len);
|
|
|
|
value = row_parse_int(data, len, mtype, unsigned_type);
|
|
|
|
func_exit:
|
|
if (UNIV_LIKELY_NULL(heap)) {
|
|
mem_heap_free(heap);
|
|
}
|
|
|
|
return (value);
|
|
}
|
|
|
|
/** Get the maximum and non-delete-marked record in an index.
|
|
@param[in] index index tree
|
|
@param[in,out] mtr mini-transaction (may be committed and restarted)
|
|
@return maximum record, page s-latched in mtr
|
|
@retval NULL if there are no records, or if all of them are delete-marked */
|
|
static const rec_t *row_search_get_max_rec(dict_index_t *index, mtr_t *mtr) {
|
|
btr_pcur_t pcur;
|
|
const rec_t *rec;
|
|
|
|
/* Open at the high/right end (false), and init cursor */
|
|
btr_pcur_open_at_index_side(false, index, BTR_SEARCH_LEAF, &pcur, true, 0,
|
|
mtr);
|
|
|
|
do {
|
|
const page_t *page;
|
|
|
|
page = btr_pcur_get_page(&pcur);
|
|
rec = page_find_rec_last_not_deleted(page);
|
|
|
|
if (page_rec_is_user_rec(rec)) {
|
|
break;
|
|
} else {
|
|
rec = NULL;
|
|
}
|
|
btr_pcur_move_before_first_on_page(&pcur);
|
|
} while (btr_pcur_move_to_prev(&pcur, mtr));
|
|
|
|
btr_pcur_close(&pcur);
|
|
|
|
return (rec);
|
|
}
|
|
|
|
/** Read the max AUTOINC value from an index.
|
|
@return DB_SUCCESS if all OK else error code, DB_RECORD_NOT_FOUND if
|
|
column name can't be found in index */
|
|
dberr_t row_search_max_autoinc(
|
|
dict_index_t *index, /*!< in: index to search */
|
|
const char *col_name, /*!< in: name of autoinc column */
|
|
ib_uint64_t *value) /*!< out: AUTOINC value read */
|
|
{
|
|
dict_field_t *dfield = index->get_field(0);
|
|
dberr_t error = DB_SUCCESS;
|
|
*value = 0;
|
|
|
|
if (strcmp(col_name, dfield->name) != 0) {
|
|
error = DB_RECORD_NOT_FOUND;
|
|
} else {
|
|
mtr_t mtr;
|
|
const rec_t *rec;
|
|
|
|
mtr_start(&mtr);
|
|
|
|
rec = row_search_get_max_rec(index, &mtr);
|
|
|
|
if (rec != NULL) {
|
|
ibool unsigned_type = (dfield->col->prtype & DATA_UNSIGNED);
|
|
|
|
*value = row_search_autoinc_read_column(index, rec, 0, dfield->col->mtype,
|
|
unsigned_type);
|
|
}
|
|
|
|
mtr_commit(&mtr);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/** Convert the innodb_table_stats clustered index record to
|
|
table_stats format.
|
|
@param[in] clust_rec clustered index record
|
|
@param[in] clust_index clustered index
|
|
@param[in] clust_offsets offsets of the clustered index
|
|
record
|
|
@param[out] tbl_stats table_stats information
|
|
to be filled. */
|
|
static void convert_to_table_stats_record(rec_t *clust_rec,
|
|
dict_index_t *clust_index,
|
|
ulint *clust_offsets,
|
|
TableStatsRecord &tbl_stats) {
|
|
for (ulint i = 0; i < rec_offs_n_fields(clust_offsets); i++) {
|
|
const byte *data;
|
|
ulint len;
|
|
data = rec_get_nth_field(clust_rec, clust_offsets, i, &len);
|
|
|
|
if (len == UNIV_SQL_NULL) {
|
|
continue;
|
|
}
|
|
|
|
tbl_stats.set_data(data, i, len);
|
|
}
|
|
}
|
|
|
|
/** Search the record present in innodb_table_stats table using
|
|
db_name, table_name and fill it in table stats structure.
|
|
@param[in] db_name database name
|
|
@param[in] tbl_name table name
|
|
@param[out] table_stats stats table structure.
|
|
@return true if successful else false. */
|
|
bool row_search_table_stats(const char *db_name, const char *tbl_name,
|
|
TableStatsRecord &table_stats) {
|
|
mtr_t mtr;
|
|
btr_pcur_t pcur;
|
|
rec_t *rec;
|
|
bool move = true;
|
|
ulint *offsets;
|
|
dict_table_t *table = dict_sys->table_stats;
|
|
dict_index_t *clust_index = table->first_index();
|
|
dtuple_t *dtuple;
|
|
dfield_t *dfield;
|
|
bool found_rec = false;
|
|
mem_heap_t *heap = mem_heap_create(1000);
|
|
|
|
dtuple = dtuple_create(heap, clust_index->n_uniq);
|
|
dict_index_copy_types(dtuple, clust_index, clust_index->n_uniq);
|
|
|
|
dfield = dtuple_get_nth_field(dtuple, TableStatsRecord::DB_NAME_COL_NO);
|
|
dfield_set_data(dfield, db_name, strlen(db_name));
|
|
|
|
dfield = dtuple_get_nth_field(dtuple, TableStatsRecord::TABLE_NAME_COL_NO);
|
|
dfield_set_data(dfield, tbl_name, strlen(tbl_name));
|
|
|
|
mtr_start(&mtr);
|
|
btr_pcur_open_with_no_init(clust_index, dtuple, PAGE_CUR_GE, BTR_SEARCH_LEAF,
|
|
&pcur, 0, &mtr);
|
|
|
|
for (; move == true; move = btr_pcur_move_to_next(&pcur, &mtr)) {
|
|
rec = btr_pcur_get_rec(&pcur);
|
|
offsets = rec_get_offsets(rec, clust_index, NULL, ULINT_UNDEFINED, &heap);
|
|
|
|
if (page_rec_is_infimum(rec) || page_rec_is_supremum(rec)) {
|
|
continue;
|
|
}
|
|
|
|
if (0 != cmp_dtuple_rec(dtuple, rec, clust_index, offsets)) {
|
|
break;
|
|
}
|
|
|
|
if (rec_get_deleted_flag(rec, dict_table_is_comp(table))) {
|
|
continue;
|
|
}
|
|
|
|
found_rec = true;
|
|
convert_to_table_stats_record(rec, clust_index, offsets, table_stats);
|
|
}
|
|
|
|
mtr_commit(&mtr);
|
|
mem_heap_free(heap);
|
|
return (found_rec);
|
|
}
|
|
|
|
/** Search the record present in innodb_index_stats using
|
|
db_name, table name and index_name and fill the
|
|
cardinality for the each column.
|
|
@param[in] db_name database name
|
|
@param[in] tbl_name table name
|
|
@param[in] index_name index name
|
|
@param[in] col_offset offset of the column in the index
|
|
@param[out] cardinality cardinality of the column.
|
|
@return true if successful else false. */
|
|
bool row_search_index_stats(const char *db_name, const char *tbl_name,
|
|
const char *index_name, ulint col_offset,
|
|
ulonglong *cardinality) {
|
|
mtr_t mtr;
|
|
btr_pcur_t pcur;
|
|
rec_t *rec;
|
|
bool move = true;
|
|
ulint *offsets;
|
|
dict_table_t *table = dict_sys->index_stats;
|
|
dict_index_t *clust_index = table->first_index();
|
|
dtuple_t *dtuple;
|
|
dfield_t *dfield;
|
|
mem_heap_t *heap = mem_heap_create(1000);
|
|
ulint n_recs = 0;
|
|
|
|
/** Number of fields to search in the table. */
|
|
static constexpr unsigned N_SEARCH_FIELDS = 3;
|
|
/** Column number of innodb_index_stats.database_name. */
|
|
static constexpr unsigned DB_NAME_COL_NO = 0;
|
|
/** Column number of innodb_index_stats.table_name. */
|
|
static constexpr unsigned TABLE_NAME_COL_NO = 1;
|
|
/** Column number of innodb_index_stats.index_name. */
|
|
static constexpr unsigned INDEX_NAME_COL_NO = 2;
|
|
/** Column number of innodb_index_stats.stat_value. */
|
|
static constexpr unsigned STAT_VALUE_COL_NO = 5;
|
|
|
|
ulint cardinality_index_offset = clust_index->get_col_pos(STAT_VALUE_COL_NO);
|
|
|
|
/** Search the innodb_index_stats table using
|
|
(database_name, table_name, index_name). */
|
|
dtuple = dtuple_create(heap, N_SEARCH_FIELDS);
|
|
dict_index_copy_types(dtuple, clust_index, N_SEARCH_FIELDS);
|
|
|
|
dfield = dtuple_get_nth_field(dtuple, DB_NAME_COL_NO);
|
|
dfield_set_data(dfield, db_name, strlen(db_name));
|
|
|
|
dfield = dtuple_get_nth_field(dtuple, TABLE_NAME_COL_NO);
|
|
dfield_set_data(dfield, tbl_name, strlen(tbl_name));
|
|
|
|
dfield = dtuple_get_nth_field(dtuple, INDEX_NAME_COL_NO);
|
|
dfield_set_data(dfield, index_name, strlen(index_name));
|
|
|
|
mtr_start(&mtr);
|
|
btr_pcur_open_with_no_init(clust_index, dtuple, PAGE_CUR_GE, BTR_SEARCH_LEAF,
|
|
&pcur, 0, &mtr);
|
|
|
|
for (; move == true; move = btr_pcur_move_to_next(&pcur, &mtr)) {
|
|
rec = btr_pcur_get_rec(&pcur);
|
|
offsets = rec_get_offsets(rec, clust_index, NULL, ULINT_UNDEFINED, &heap);
|
|
|
|
if (page_rec_is_infimum(rec) || page_rec_is_supremum(rec)) {
|
|
continue;
|
|
}
|
|
|
|
if (0 != cmp_dtuple_rec(dtuple, rec, clust_index, offsets)) {
|
|
break;
|
|
}
|
|
|
|
if (rec_get_deleted_flag(rec, dict_table_is_comp(table))) {
|
|
continue;
|
|
}
|
|
|
|
if (n_recs == col_offset) {
|
|
const byte *data;
|
|
ulint len;
|
|
data = rec_get_nth_field(rec, offsets, cardinality_index_offset, &len);
|
|
|
|
*cardinality = static_cast<ulonglong>(round(mach_read_from_8(data)));
|
|
mtr_commit(&mtr);
|
|
mem_heap_free(heap);
|
|
return (true);
|
|
}
|
|
|
|
n_recs++;
|
|
}
|
|
|
|
mtr_commit(&mtr);
|
|
mem_heap_free(heap);
|
|
return (false);
|
|
}
|