polardbxengine/storage/innobase/include/rem0rec.ic

1249 lines
40 KiB
Plaintext

/*****************************************************************************
Copyright (c) 1994, 2019, Oracle and/or its affiliates. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License, version 2.0, as published by the
Free Software Foundation.
This program is also distributed with certain software (including but not
limited to OpenSSL) that is licensed under separate terms, as designated in a
particular file or component or in included license documentation. The authors
of MySQL hereby grant you an additional permission to link the program and
your derivative works with the separately licensed software that they have
included with MySQL.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0,
for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*****************************************************************************/
/** @file include/rem0rec.ic
Record manager
Created 5/30/1994 Heikki Tuuri
*************************************************************************/
#include "btr0types.h"
#include "dict0boot.h"
#include "dict0dict.h"
#include "mach0data.h"
#include "ut0byte.h"
/* Offsets of the bit-fields in an old-style record. NOTE! In the table the
most significant bytes and bits are written below less significant.
(1) byte offset (2) bit usage within byte
downward from
origin -> 1 8 bits pointer to next record
2 8 bits pointer to next record
3 1 bit short flag
7 bits number of fields
4 3 bits number of fields
5 bits heap number
5 8 bits heap number
6 4 bits n_owned
4 bits info bits
*/
/* Offsets of the bit-fields in a new-style record. NOTE! In the table the
most significant bytes and bits are written below less significant.
(1) byte offset (2) bit usage within byte
downward from
origin -> 1 8 bits relative offset of next record
2 8 bits relative offset of next record
the relative offset is an unsigned 16-bit
integer:
(offset_of_next_record
- offset_of_this_record) mod 64Ki,
where mod is the modulo as a non-negative
number;
we can calculate the offset of the next
record with the formula:
relative_offset + offset_of_this_record
mod UNIV_PAGE_SIZE
3 3 bits status:
000=conventional record
001=node pointer record (inside B-tree)
010=infimum record
011=supremum record
1xx=reserved
5 bits heap number
4 8 bits heap number
5 4 bits n_owned
4 bits info bits
*/
/** Sets the value of the ith field SQL null bit of an old-style record. */
void rec_set_nth_field_null_bit(rec_t *rec, /*!< in: record */
ulint i, /*!< in: ith field */
ibool val); /*!< in: value to set */
/** Sets an old-style record field to SQL null.
The physical size of the field is not changed. */
void rec_set_nth_field_sql_null(rec_t *rec, /*!< in: record */
ulint n); /*!< in: index of the field */
/** Sets a bit field within 1 byte. */
UNIV_INLINE
void rec_set_bit_field_1(
rec_t *rec, /*!< in: pointer to record origin */
ulint val, /*!< in: value to set */
ulint offs, /*!< in: offset from the origin down */
ulint mask, /*!< in: mask used to filter bits */
ulint shift) /*!< in: shift right applied after masking */
{
ut_ad(rec);
ut_ad(offs <= REC_N_OLD_EXTRA_BYTES);
ut_ad(mask);
ut_ad(mask <= 0xFFUL);
ut_ad(((mask >> shift) << shift) == mask);
ut_ad(((val << shift) & mask) == (val << shift));
mach_write_to_1(rec - offs,
(mach_read_from_1(rec - offs) & ~mask) | (val << shift));
}
/** Sets a bit field within 2 bytes. */
UNIV_INLINE
void rec_set_bit_field_2(
rec_t *rec, /*!< in: pointer to record origin */
ulint val, /*!< in: value to set */
ulint offs, /*!< in: offset from the origin down */
ulint mask, /*!< in: mask used to filter bits */
ulint shift) /*!< in: shift right applied after masking */
{
ut_ad(rec);
ut_ad(offs <= REC_N_OLD_EXTRA_BYTES);
ut_ad(mask > 0xFFUL);
ut_ad(mask <= 0xFFFFUL);
ut_ad((mask >> shift) & 1);
ut_ad(0 == ((mask >> shift) & ((mask >> shift) + 1)));
ut_ad(((mask >> shift) << shift) == mask);
ut_ad(((val << shift) & mask) == (val << shift));
mach_write_to_2(rec - offs,
(mach_read_from_2(rec - offs) & ~mask) | (val << shift));
}
/** The following function is used to get the pointer of the next chained record
on the same page.
@return pointer to the next chained record, or NULL if none */
UNIV_INLINE
const rec_t *rec_get_next_ptr_const(
const rec_t *rec, /*!< in: physical record */
ulint comp) /*!< in: nonzero=compact page format */
{
ulint field_value;
ut_ad(REC_NEXT_MASK == 0xFFFFUL);
ut_ad(REC_NEXT_SHIFT == 0);
field_value = mach_read_from_2(rec - REC_NEXT);
if (field_value == 0) {
return (NULL);
}
if (comp) {
if (UNIV_PAGE_SIZE_MAX <= 32768) {
/* Note that for 64 KiB pages, field_value can
'wrap around' and the debug assertion is not valid */
/* In the following assertion, field_value is
interpreted as signed 16-bit integer in 2's complement
arithmetics. If all platforms defined int16_t in the
standard headers, the expression could be written
simpler as:
(int16_t) field_value + ut_align_offset(...)
< UNIV_PAGE_SIZE */
ut_ad((field_value >= 32768 ? field_value - 65536 : field_value) +
ut_align_offset(rec, UNIV_PAGE_SIZE) <
UNIV_PAGE_SIZE);
}
/* There must be at least REC_N_NEW_EXTRA_BYTES + 1
between each record. */
ut_ad((field_value > REC_N_NEW_EXTRA_BYTES && field_value < 32768) ||
field_value < (uint16)-REC_N_NEW_EXTRA_BYTES);
return ((byte *)ut_align_down(rec, UNIV_PAGE_SIZE) +
ut_align_offset(rec + field_value, UNIV_PAGE_SIZE));
} else {
ut_ad(field_value < UNIV_PAGE_SIZE);
return ((byte *)ut_align_down(rec, UNIV_PAGE_SIZE) + field_value);
}
}
/** The following function is used to get the pointer of the next chained record
on the same page.
@return pointer to the next chained record, or NULL if none */
UNIV_INLINE
rec_t *rec_get_next_ptr(rec_t *rec, /*!< in: physical record */
ulint comp) /*!< in: nonzero=compact page format */
{
return (const_cast<rec_t *>(rec_get_next_ptr_const(rec, comp)));
}
/** The following function is used to get the offset of the next chained record
on the same page.
@return the page offset of the next chained record, or 0 if none */
UNIV_INLINE
ulint rec_get_next_offs(const rec_t *rec, /*!< in: physical record */
ulint comp) /*!< in: nonzero=compact page format */
{
ulint field_value;
#if REC_NEXT_MASK != 0xFFFFUL
#error "REC_NEXT_MASK != 0xFFFFUL"
#endif
#if REC_NEXT_SHIFT
#error "REC_NEXT_SHIFT != 0"
#endif
field_value = mach_read_from_2(rec - REC_NEXT);
if (comp) {
if (UNIV_PAGE_SIZE_MAX <= 32768) {
/* Note that for 64 KiB pages, field_value can
'wrap around' and the debug assertion is not valid */
/* In the following assertion, field_value is
interpreted as signed 16-bit integer in 2's complement
arithmetics.
If all platforms defined int16_t in the standard
headers, the expression could be written simpler as
(int16_t) field_value + ut_align_offset(...)
< UNIV_PAGE_SIZE */
ut_ad((field_value >= 32768 ? field_value - 65536 : field_value) +
ut_align_offset(rec, UNIV_PAGE_SIZE) <
UNIV_PAGE_SIZE);
}
if (field_value == 0) {
return (0);
}
/* There must be at least REC_N_NEW_EXTRA_BYTES + 1
between each record. */
ut_ad((field_value > REC_N_NEW_EXTRA_BYTES && field_value < 32768) ||
field_value < (uint16)-REC_N_NEW_EXTRA_BYTES);
return (ut_align_offset(rec + field_value, UNIV_PAGE_SIZE));
} else {
ut_ad(field_value < UNIV_PAGE_SIZE);
return (field_value);
}
}
/** The following function is used to set the next record offset field
of an old-style record. */
UNIV_INLINE
void rec_set_next_offs_old(rec_t *rec, /*!< in: old-style physical record */
ulint next) /*!< in: offset of the next record */
{
ut_ad(rec);
ut_ad(UNIV_PAGE_SIZE > next);
#if REC_NEXT_MASK != 0xFFFFUL
#error "REC_NEXT_MASK != 0xFFFFUL"
#endif
#if REC_NEXT_SHIFT
#error "REC_NEXT_SHIFT != 0"
#endif
mach_write_to_2(rec - REC_NEXT, next);
}
/** The following function is used to set the next record offset field
of a new-style record. */
UNIV_INLINE
void rec_set_next_offs_new(rec_t *rec, /*!< in/out: new-style physical record */
ulint next) /*!< in: offset of the next record */
{
ulint field_value;
ut_ad(rec);
ut_ad(UNIV_PAGE_SIZE > next);
if (!next) {
field_value = 0;
} else {
/* The following two statements calculate
next - offset_of_rec mod 64Ki, where mod is the modulo
as a non-negative number */
field_value =
(ulint)((lint)next - (lint)ut_align_offset(rec, UNIV_PAGE_SIZE));
field_value &= REC_NEXT_MASK;
}
mach_write_to_2(rec - REC_NEXT, field_value);
}
/** The following function is used to set the number of fields
in an old-style record. */
UNIV_INLINE
void rec_set_n_fields_old(rec_t *rec, /*!< in: physical record */
ulint n_fields) /*!< in: the number of fields */
{
ut_ad(rec);
ut_ad(n_fields <= REC_MAX_N_FIELDS);
ut_ad(n_fields > 0);
rec_set_bit_field_2(rec, n_fields, REC_OLD_N_FIELDS, REC_OLD_N_FIELDS_MASK,
REC_OLD_N_FIELDS_SHIFT);
}
/** The following function is used to get the number of records owned by the
previous directory record.
@return number of owned records */
UNIV_INLINE
ulint rec_get_n_owned_old(
const rec_t *rec) /*!< in: old-style physical record */
{
return (rec_get_bit_field_1(rec, REC_OLD_N_OWNED, REC_N_OWNED_MASK,
REC_N_OWNED_SHIFT));
}
/** The following function is used to set the number of owned records. */
UNIV_INLINE
void rec_set_n_owned_old(rec_t *rec, /*!< in: old-style physical record */
ulint n_owned) /*!< in: the number of owned */
{
rec_set_bit_field_1(rec, n_owned, REC_OLD_N_OWNED, REC_N_OWNED_MASK,
REC_N_OWNED_SHIFT);
}
/** The following function is used to get the number of records owned by the
previous directory record.
@return number of owned records */
UNIV_INLINE
ulint rec_get_n_owned_new(
const rec_t *rec) /*!< in: new-style physical record */
{
return (rec_get_bit_field_1(rec, REC_NEW_N_OWNED, REC_N_OWNED_MASK,
REC_N_OWNED_SHIFT));
}
/** The following function is used to set the number of owned records. */
UNIV_INLINE
void rec_set_n_owned_new(
rec_t *rec, /*!< in/out: new-style physical record */
page_zip_des_t *page_zip, /*!< in/out: compressed page, or NULL */
ulint n_owned) /*!< in: the number of owned */
{
rec_set_bit_field_1(rec, n_owned, REC_NEW_N_OWNED, REC_N_OWNED_MASK,
REC_N_OWNED_SHIFT);
if (page_zip && rec_get_status(rec) != REC_STATUS_SUPREMUM) {
page_zip_rec_set_owned(page_zip, rec, n_owned);
}
}
/** The following function is used to set the info bits of a record. */
UNIV_INLINE
void rec_set_info_bits_old(rec_t *rec, /*!< in: old-style physical record */
ulint bits) /*!< in: info bits */
{
ut_ad(rec_info_bits_valid(bits));
rec_set_bit_field_1(rec, bits, REC_OLD_INFO_BITS, REC_INFO_BITS_MASK,
REC_INFO_BITS_SHIFT);
}
/** The following function is used to set the info bits of a record. */
UNIV_INLINE
void rec_set_info_bits_new(rec_t *rec, /*!< in/out: new-style physical record */
ulint bits) /*!< in: info bits */
{
ut_ad(rec_info_bits_valid(bits));
rec_set_bit_field_1(rec, bits, REC_NEW_INFO_BITS, REC_INFO_BITS_MASK,
REC_INFO_BITS_SHIFT);
}
/** The following function is used to set the status bits of a new-style record.
*/
UNIV_INLINE
void rec_set_status(rec_t *rec, /*!< in/out: physical record */
ulint bits) /*!< in: info bits */
{
rec_set_bit_field_1(rec, bits, REC_NEW_STATUS, REC_NEW_STATUS_MASK,
REC_NEW_STATUS_SHIFT);
}
/** The following function is used to retrieve the info and status
bits of a record. (Only compact records have status bits.)
@return info bits */
UNIV_INLINE
ulint rec_get_info_and_status_bits(
const rec_t *rec, /*!< in: physical record */
ulint comp) /*!< in: nonzero=compact page format */
{
ulint bits;
#if (REC_NEW_STATUS_MASK >> REC_NEW_STATUS_SHIFT) & \
(REC_INFO_BITS_MASK >> REC_INFO_BITS_SHIFT)
#error "REC_NEW_STATUS_MASK and REC_INFO_BITS_MASK overlap"
#endif
if (comp) {
bits = rec_get_info_bits(rec, TRUE) | rec_get_status(rec);
} else {
bits = rec_get_info_bits(rec, FALSE);
ut_ad(!(bits & ~(REC_INFO_BITS_MASK >> REC_INFO_BITS_SHIFT)));
}
return (bits);
}
/** The following function is used to set the info and status
bits of a record. (Only compact records have status bits.) */
UNIV_INLINE
void rec_set_info_and_status_bits(rec_t *rec, /*!< in/out: physical record */
ulint bits) /*!< in: info bits */
{
#if (REC_NEW_STATUS_MASK >> REC_NEW_STATUS_SHIFT) & \
(REC_INFO_BITS_MASK >> REC_INFO_BITS_SHIFT)
#error "REC_NEW_STATUS_MASK and REC_INFO_BITS_MASK overlap"
#endif
rec_set_status(rec, bits & REC_NEW_STATUS_MASK);
rec_set_info_bits_new(rec, bits & ~REC_NEW_STATUS_MASK);
}
/** The following function tells if record is delete marked.
@return nonzero if delete marked */
UNIV_INLINE
ulint rec_get_deleted_flag(const rec_t *rec, /*!< in: physical record */
ulint comp) /*!< in: nonzero=compact page format */
{
if (comp) {
return (rec_get_bit_field_1(rec, REC_NEW_INFO_BITS, REC_INFO_DELETED_FLAG,
REC_INFO_BITS_SHIFT));
} else {
return (rec_get_bit_field_1(rec, REC_OLD_INFO_BITS, REC_INFO_DELETED_FLAG,
REC_INFO_BITS_SHIFT));
}
}
/** The following function is used to set the deleted bit. */
UNIV_INLINE
void rec_set_deleted_flag_old(rec_t *rec, /*!< in: old-style physical record */
ulint flag) /*!< in: nonzero if delete marked */
{
ulint val;
val = rec_get_info_bits(rec, FALSE);
if (flag) {
val |= REC_INFO_DELETED_FLAG;
} else {
val &= ~REC_INFO_DELETED_FLAG;
}
rec_set_info_bits_old(rec, val);
}
/** The following function is used to set the deleted bit. */
UNIV_INLINE
void rec_set_deleted_flag_new(
rec_t *rec, /*!< in/out: new-style physical record */
page_zip_des_t *page_zip, /*!< in/out: compressed page, or NULL */
ulint flag) /*!< in: nonzero if delete marked */
{
ulint val;
val = rec_get_info_bits(rec, TRUE);
if (flag) {
val |= REC_INFO_DELETED_FLAG;
} else {
val &= ~REC_INFO_DELETED_FLAG;
}
rec_set_info_bits_new(rec, val);
if (page_zip) {
page_zip_rec_set_deleted(page_zip, rec, flag);
}
}
/** The following function is used to set the instant bit.
@param[in,out] rec new-style physical record
@param[in] flag set the bit to this flag */
UNIV_INLINE
void rec_set_instant_flag_new(rec_t *rec, bool flag) {
ulint val;
val = rec_get_info_bits(rec, TRUE);
if (flag) {
val |= REC_INFO_INSTANT_FLAG;
} else {
val &= ~REC_INFO_INSTANT_FLAG;
}
rec_set_info_bits_new(rec, val);
}
/** The following function tells if a new-style record is a node pointer.
@return true if node pointer */
UNIV_INLINE
bool rec_get_node_ptr_flag(const rec_t *rec) /*!< in: physical record */
{
return (REC_STATUS_NODE_PTR == rec_get_status(rec));
}
/** The following function is used to get the order number
of an old-style record in the heap of the index page.
@return heap order number */
UNIV_INLINE
ulint rec_get_heap_no_old(const rec_t *rec) /*!< in: physical record */
{
return (rec_get_bit_field_2(rec, REC_OLD_HEAP_NO, REC_HEAP_NO_MASK,
REC_HEAP_NO_SHIFT));
}
/** The following function is used to set the heap number
field in an old-style record. */
UNIV_INLINE
void rec_set_heap_no_old(rec_t *rec, /*!< in: physical record */
ulint heap_no) /*!< in: the heap number */
{
rec_set_bit_field_2(rec, heap_no, REC_OLD_HEAP_NO, REC_HEAP_NO_MASK,
REC_HEAP_NO_SHIFT);
}
/** The following function is used to get the order number
of a new-style record in the heap of the index page.
@return heap order number */
UNIV_INLINE
ulint rec_get_heap_no_new(const rec_t *rec) /*!< in: physical record */
{
return (rec_get_bit_field_2(rec, REC_NEW_HEAP_NO, REC_HEAP_NO_MASK,
REC_HEAP_NO_SHIFT));
}
/** The following function is used to set the heap number
field in a new-style record. */
UNIV_INLINE
void rec_set_heap_no_new(rec_t *rec, /*!< in/out: physical record */
ulint heap_no) /*!< in: the heap number */
{
rec_set_bit_field_2(rec, heap_no, REC_NEW_HEAP_NO, REC_HEAP_NO_MASK,
REC_HEAP_NO_SHIFT);
}
/** The following function is used to set the 1-byte offsets flag. */
UNIV_INLINE
void rec_set_1byte_offs_flag(rec_t *rec, /*!< in: physical record */
ibool flag) /*!< in: TRUE if 1byte form */
{
#if TRUE != 1
#error "TRUE != 1"
#endif
ut_ad(flag <= TRUE);
rec_set_bit_field_1(rec, flag, REC_OLD_SHORT, REC_OLD_SHORT_MASK,
REC_OLD_SHORT_SHIFT);
}
/** Returns nonzero if the field is stored off-page.
@retval 0 if the field is stored in-page
@retval REC_2BYTE_EXTERN_MASK if the field is stored externally */
UNIV_INLINE
ulint rec_2_is_field_extern(const rec_t *rec, /*!< in: record */
ulint n) /*!< in: field index */
{
return (rec_2_get_field_end_info(rec, n) & REC_2BYTE_EXTERN_MASK);
}
/** The following function is used to get an offset to the nth
data field in a record.
@return offset from the origin of rec */
UNIV_INLINE
ulint rec_get_nth_field_offs(
const ulint *offsets, /*!< in: array returned by rec_get_offsets() */
ulint n, /*!< in: index of the field */
ulint *len) /*!< out: length of the field; UNIV_SQL_NULL
if SQL null; UNIV_SQL_ADD_COL_DEFAULT if it's default
value and no value inlined */
{
ulint offs;
ulint length;
ut_ad(n < rec_offs_n_fields(offsets));
ut_ad(len);
if (n == 0) {
offs = 0;
} else {
offs = rec_offs_base(offsets)[n] & REC_OFFS_MASK;
}
length = rec_offs_base(offsets)[1 + n];
if (length & REC_OFFS_SQL_NULL) {
length = UNIV_SQL_NULL;
} else if (length & REC_OFFS_DEFAULT) {
length = UNIV_SQL_ADD_COL_DEFAULT;
} else {
length &= REC_OFFS_MASK;
length -= offs;
}
*len = length;
return (offs);
}
/** Determine if the field is not NULL and not having default value
after instant ADD COLUMN
@param[in] len length of a field
@return true if not NULL and not having default value */
UNIV_INLINE
bool rec_field_not_null_not_add_col_def(ulint len) {
return (len != UNIV_SQL_NULL && len != UNIV_SQL_ADD_COL_DEFAULT);
}
/** Determine if the offsets are for a record in the new
compact format.
@return nonzero if compact format */
UNIV_INLINE
ulint rec_offs_comp(
const ulint *offsets) /*!< in: array returned by rec_get_offsets() */
{
ut_ad(rec_offs_validate(NULL, NULL, offsets));
return (*rec_offs_base(offsets) & REC_OFFS_COMPACT);
}
/** Determine if the offsets are for a record containing
externally stored columns.
@return nonzero if externally stored */
UNIV_INLINE
ulint rec_offs_any_extern(
const ulint *offsets) /*!< in: array returned by rec_get_offsets() */
{
ut_ad(rec_offs_validate(NULL, NULL, offsets));
return (*rec_offs_base(offsets) & REC_OFFS_EXTERNAL);
}
/** Determine if the offsets are for a record containing null BLOB pointers.
@return first field containing a null BLOB pointer, or NULL if none found */
UNIV_INLINE
const byte *rec_offs_any_null_extern(
const rec_t *rec, /*!< in: record */
const ulint *offsets) /*!< in: rec_get_offsets(rec) */
{
ulint i;
ut_ad(rec_offs_validate(rec, NULL, offsets));
if (!rec_offs_any_extern(offsets)) {
return (NULL);
}
for (i = 0; i < rec_offs_n_fields(offsets); i++) {
if (rec_offs_nth_extern(offsets, i)) {
ulint len;
const byte *field = rec_get_nth_field(rec, offsets, i, &len);
ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE);
if (!memcmp(field + len - BTR_EXTERN_FIELD_REF_SIZE, field_ref_zero,
BTR_EXTERN_FIELD_REF_SIZE)) {
return (field);
}
}
}
return (NULL);
}
/** Returns nonzero if the extern bit is set in nth field of rec.
@return nonzero if externally stored */
UNIV_INLINE
ulint rec_offs_nth_extern(
const ulint *offsets, /*!< in: array returned by rec_get_offsets() */
ulint n) /*!< in: nth field */
{
ut_ad(rec_offs_validate(NULL, NULL, offsets));
ut_ad(n < rec_offs_n_fields(offsets));
return (rec_offs_base(offsets)[1 + n] & REC_OFFS_EXTERNAL);
}
/** Returns nonzero if the SQL NULL bit is set in nth field of rec.
@return nonzero if SQL NULL */
UNIV_INLINE
ulint rec_offs_nth_sql_null(
const ulint *offsets, /*!< in: array returned by rec_get_offsets() */
ulint n) /*!< in: nth field */
{
ut_ad(rec_offs_validate(NULL, NULL, offsets));
ut_ad(n < rec_offs_n_fields(offsets));
return (rec_offs_base(offsets)[1 + n] & REC_OFFS_SQL_NULL);
}
/** Returns nonzero if the default bit is set in nth field of rec.
@return nonzero if default bit is set */
UNIV_INLINE
ulint rec_offs_nth_default(const ulint *offsets, ulint n) {
ut_ad(rec_offs_validate(NULL, NULL, offsets));
ut_ad(n < rec_offs_n_fields(offsets));
return (rec_offs_base(offsets)[1 + n] & REC_OFFS_DEFAULT);
}
/** Gets the physical size of a field.
@return length of field */
UNIV_INLINE
ulint rec_offs_nth_size(
const ulint *offsets, /*!< in: array returned by rec_get_offsets() */
ulint n) /*!< in: nth field */
{
ut_ad(rec_offs_validate(NULL, NULL, offsets));
ut_ad(n < rec_offs_n_fields(offsets));
if (!n) {
return (rec_offs_base(offsets)[1 + n] & REC_OFFS_MASK);
}
return ((rec_offs_base(offsets)[1 + n] - rec_offs_base(offsets)[n]) &
REC_OFFS_MASK);
}
/** Returns the number of extern bits set in a record.
@return number of externally stored fields */
UNIV_INLINE
ulint rec_offs_n_extern(
const ulint *offsets) /*!< in: array returned by rec_get_offsets() */
{
ulint n = 0;
if (rec_offs_any_extern(offsets)) {
ulint i;
for (i = rec_offs_n_fields(offsets); i--;) {
if (rec_offs_nth_extern(offsets, i)) {
n++;
}
}
}
return (n);
}
/** Returns the offset of n - 1th field end if the record is stored in the
1-byte offsets form. If the field is SQL null, the flag is ORed in the returned
value. This function and the 2-byte counterpart are defined here because the
C-compiler was not able to sum negative and positive constant offsets, and
warned of constant arithmetic overflow within the compiler.
@return offset of the start of the PREVIOUS field, SQL null flag ORed */
UNIV_INLINE
ulint rec_1_get_prev_field_end_info(const rec_t *rec, /*!< in: record */
ulint n) /*!< in: field index */
{
ut_ad(rec_get_1byte_offs_flag(rec));
ut_ad(n <= rec_get_n_fields_old_raw(rec));
return (mach_read_from_1(rec - (REC_N_OLD_EXTRA_BYTES + n)));
}
/** Returns the offset of n - 1th field end if the record is stored in the
2-byte offsets form. If the field is SQL null, the flag is ORed in the returned
value.
@return offset of the start of the PREVIOUS field, SQL null flag ORed */
UNIV_INLINE
ulint rec_2_get_prev_field_end_info(const rec_t *rec, /*!< in: record */
ulint n) /*!< in: field index */
{
ut_ad(!rec_get_1byte_offs_flag(rec));
ut_ad(n <= rec_get_n_fields_old_raw(rec));
return (mach_read_from_2(rec - (REC_N_OLD_EXTRA_BYTES + 2 * n)));
}
/** Sets the field end info for the nth field if the record is stored in the
1-byte format. */
UNIV_INLINE
void rec_1_set_field_end_info(rec_t *rec, /*!< in: record */
ulint n, /*!< in: field index */
ulint info) /*!< in: value to set */
{
ut_ad(rec_get_1byte_offs_flag(rec));
ut_ad(n < rec_get_n_fields_old_raw(rec));
mach_write_to_1(rec - (REC_N_OLD_EXTRA_BYTES + n + 1), info);
}
/** Sets the field end info for the nth field if the record is stored in the
2-byte format. */
UNIV_INLINE
void rec_2_set_field_end_info(rec_t *rec, /*!< in: record */
ulint n, /*!< in: field index */
ulint info) /*!< in: value to set */
{
ut_ad(!rec_get_1byte_offs_flag(rec));
ut_ad(n < rec_get_n_fields_old_raw(rec));
mach_write_to_2(rec - (REC_N_OLD_EXTRA_BYTES + 2 * n + 2), info);
}
/** Returns the offset of nth field start if the record is stored in the 1-byte
offsets form.
@return offset of the start of the field */
UNIV_INLINE
ulint rec_1_get_field_start_offs(const rec_t *rec, /*!< in: record */
ulint n) /*!< in: field index */
{
ut_ad(rec_get_1byte_offs_flag(rec));
ut_ad(n <= rec_get_n_fields_old_raw(rec));
if (n == 0) {
return (0);
}
return (rec_1_get_prev_field_end_info(rec, n) & ~REC_1BYTE_SQL_NULL_MASK);
}
/** Returns the offset of nth field start if the record is stored in the 2-byte
offsets form.
@return offset of the start of the field */
UNIV_INLINE
ulint rec_2_get_field_start_offs(const rec_t *rec, /*!< in: record */
ulint n) /*!< in: field index */
{
ut_ad(!rec_get_1byte_offs_flag(rec));
ut_ad(n <= rec_get_n_fields_old_raw(rec));
if (n == 0) {
return (0);
}
return (rec_2_get_prev_field_end_info(rec, n) &
~(REC_2BYTE_SQL_NULL_MASK | REC_2BYTE_EXTERN_MASK));
}
/** The following function is used to read the offset of the start of a data
field in the record. The start of an SQL null field is the end offset of the
previous non-null field, or 0, if none exists. If n is the number of the last
field + 1, then the end offset of the last field is returned.
@return offset of the start of the field */
UNIV_INLINE
ulint rec_get_field_start_offs(const rec_t *rec, /*!< in: record */
ulint n) /*!< in: field index */
{
ut_ad(rec);
ut_ad(n <= rec_get_n_fields_old_raw(rec));
if (n == 0) {
return (0);
}
if (rec_get_1byte_offs_flag(rec)) {
return (rec_1_get_field_start_offs(rec, n));
}
return (rec_2_get_field_start_offs(rec, n));
}
/** Gets the physical size of an old-style field.
Also an SQL null may have a field of size > 0,
if the data type is of a fixed size.
@return field size in bytes */
UNIV_INLINE
ulint rec_get_nth_field_size(const rec_t *rec, /*!< in: record */
ulint n) /*!< in: index of the field */
{
ulint os;
ulint next_os;
os = rec_get_field_start_offs(rec, n);
next_os = rec_get_field_start_offs(rec, n + 1);
ut_ad(next_os - os < UNIV_PAGE_SIZE);
return (next_os - os);
}
/** This is used to modify the value of an already existing field in a record.
The previous value must have exactly the same size as the new value. If len
is UNIV_SQL_NULL then the field is treated as an SQL null.
For records in ROW_FORMAT=COMPACT (new-style records), len must not be
UNIV_SQL_NULL unless the field already is SQL null. */
UNIV_INLINE
void rec_set_nth_field(
rec_t *rec, /*!< in: record */
const ulint *offsets, /*!< in: array returned by rec_get_offsets() */
ulint n, /*!< in: index number of the field */
const void *data, /*!< in: pointer to the data
if not SQL null */
ulint len) /*!< in: length of the data or UNIV_SQL_NULL */
{
byte *data2;
ulint len2;
ut_ad(rec);
ut_ad(rec_offs_validate(rec, NULL, offsets));
if (len == UNIV_SQL_NULL) {
if (!rec_offs_nth_sql_null(offsets, n)) {
ut_a(!rec_offs_comp(offsets));
rec_set_nth_field_sql_null(rec, n);
}
return;
}
ut_ad(!rec_offs_nth_default(offsets, n));
data2 = rec_get_nth_field(rec, offsets, n, &len2);
if (len2 == UNIV_SQL_NULL) {
ut_ad(!rec_offs_comp(offsets));
rec_set_nth_field_null_bit(rec, n, FALSE);
ut_ad(len == rec_get_nth_field_size(rec, n));
} else {
ut_ad(len2 == len);
}
ut_memcpy(data2, data, len);
}
/** The following function returns the data size of an old-style physical
record, that is the sum of field lengths. SQL null fields
are counted as length 0 fields. The value returned by the function
is the distance from record origin to record end in bytes.
@return size */
UNIV_INLINE
ulint rec_get_data_size_old(const rec_t *rec) /*!< in: physical record */
{
ut_ad(rec);
return (rec_get_field_start_offs(rec, rec_get_n_fields_old_raw(rec)));
}
/** The following function returns the data size of a physical
record, that is the sum of field lengths. SQL null fields
are counted as length 0 fields. The value returned by the function
is the distance from record origin to record end in bytes.
@return size */
UNIV_INLINE
ulint rec_offs_data_size(
const ulint *offsets) /*!< in: array returned by rec_get_offsets() */
{
ulint size;
ut_ad(rec_offs_validate(NULL, NULL, offsets));
size = rec_offs_base(offsets)[rec_offs_n_fields(offsets)] & REC_OFFS_MASK;
ut_ad(size < UNIV_PAGE_SIZE);
return (size);
}
/** Returns the total size of record minus data size of record. The value
returned by the function is the distance from record start to record origin
in bytes.
@return size */
UNIV_INLINE
ulint rec_offs_extra_size(
const ulint *offsets) /*!< in: array returned by rec_get_offsets() */
{
ulint size;
ut_ad(rec_offs_validate(NULL, NULL, offsets));
size = *rec_offs_base(offsets) & ~(REC_OFFS_COMPACT | REC_OFFS_EXTERNAL);
ut_ad(size < UNIV_PAGE_SIZE);
return (size);
}
/** Returns the total size of a physical record.
@return size */
UNIV_INLINE
ulint rec_offs_size(
const ulint *offsets) /*!< in: array returned by rec_get_offsets() */
{
return (rec_offs_data_size(offsets) + rec_offs_extra_size(offsets));
}
#ifdef UNIV_DEBUG
/** Returns a pointer to the end of the record.
@return pointer to end */
UNIV_INLINE
byte *rec_get_end(
const rec_t *rec, /*!< in: pointer to record */
const ulint *offsets) /*!< in: array returned by rec_get_offsets() */
{
ut_ad(rec_offs_validate(rec, NULL, offsets));
return (const_cast<rec_t *>(rec + rec_offs_data_size(offsets)));
}
/** Returns a pointer to the start of the record.
@return pointer to start */
UNIV_INLINE
byte *rec_get_start(
const rec_t *rec, /*!< in: pointer to record */
const ulint *offsets) /*!< in: array returned by rec_get_offsets() */
{
ut_ad(rec_offs_validate(rec, NULL, offsets));
return (const_cast<rec_t *>(rec - rec_offs_extra_size(offsets)));
}
#endif /* UNIV_DEBUG */
/** Copy a physical record to a buffer.
@param[in] buf buffer
@param[in] rec physical record
@param[in] offsets array returned by rec_get_offsets()
@return pointer to the origin of the copy */
UNIV_INLINE
rec_t *rec_copy(void *buf, const rec_t *rec, const ulint *offsets) {
ulint extra_len;
ulint data_len;
ut_ad(rec != NULL);
ut_ad(buf != NULL);
ut_ad(rec_offs_validate(rec, NULL, offsets));
ut_ad(rec_validate(rec, offsets));
extra_len = rec_offs_extra_size(offsets);
data_len = rec_offs_data_size(offsets);
ut_memcpy(buf, rec - extra_len, extra_len + data_len);
return ((byte *)buf + extra_len);
}
/** Returns the extra size of an old-style physical record if we know its
data size and number of fields.
@return extra size */
UNIV_INLINE
ulint rec_get_converted_extra_size(
ulint data_size, /*!< in: data size */
ulint n_fields, /*!< in: number of fields */
ulint n_ext) /*!< in: number of externally stored columns */
{
if (!n_ext && data_size <= REC_1BYTE_OFFS_LIMIT) {
return (REC_N_OLD_EXTRA_BYTES + n_fields);
}
return (REC_N_OLD_EXTRA_BYTES + 2 * n_fields);
}
/** The following function returns the size of a data tuple when converted to
a physical record.
@return size */
UNIV_INLINE
ulint rec_get_converted_size(
const dict_index_t *index, /*!< in: record descriptor */
const dtuple_t *dtuple, /*!< in: data tuple */
ulint n_ext) /*!< in: number of externally stored columns */
{
ulint data_size;
ulint extra_size;
ut_ad(index);
ut_ad(dtuple);
ut_ad(dtuple_check_typed(dtuple));
ut_ad(dict_index_is_ibuf(index)
/* If this is an instant index and the tuple comes from
UPDATE, its fields could be less than index definition */
|| index->has_instant_cols()
|| dtuple_get_n_fields(dtuple) ==
(((dtuple_get_info_bits(dtuple) & REC_NEW_STATUS_MASK) ==
REC_STATUS_NODE_PTR)
? dict_index_get_n_unique_in_tree_nonleaf(index) + 1
: dict_index_get_n_fields(index))
/* a record for older SYS_INDEXES table
(missing merge_threshold column) is acceptable. */
|| (index->table->id == DICT_INDEXES_ID &&
dtuple_get_n_fields(dtuple) == dict_index_get_n_fields(index) - 1));
if (dict_table_is_comp(index->table)) {
return (rec_get_converted_size_comp(
index, dtuple_get_info_bits(dtuple) & REC_NEW_STATUS_MASK,
dtuple->fields, dtuple->n_fields, NULL));
}
data_size = dtuple_get_data_size(dtuple, 0);
extra_size = rec_get_converted_extra_size(data_size,
dtuple_get_n_fields(dtuple), n_ext);
#if 0
/* This code is inactive since it may be the wrong place to add
in the size of node pointers used in parent pages AND it is not
currently needed since ha_innobase::max_supported_key_length()
ensures that the key size limit for each page size is well below
the actual limit ((free space on page / 4) - record overhead).
But those limits will need to be raised when InnoDB can
support multiple page sizes. At that time, we will need
to consider the node pointer on these universal btrees. */
if (dict_index_is_ibuf(index)) {
/* This is for the insert buffer B-tree.
All fields in the leaf tuple ascend to the
parent node plus the child page pointer. */
/* ibuf cannot contain externally stored fields */
ut_ad(n_ext == 0);
/* Add the data pointer and recompute extra_size
based on one more field. */
data_size += REC_NODE_PTR_SIZE;
extra_size = rec_get_converted_extra_size(
data_size,
dtuple_get_n_fields(dtuple) + 1,
0);
/* Be sure dtuple->n_fields has this node ptr
accounted for. This function should correspond to
what rec_convert_dtuple_to_rec() needs in storage.
In optimistic insert or update-not-in-place, we will
have to ensure that if the record is converted to a
node pointer, it will not become too large.*/
}
#endif
return (data_size + extra_size);
}
#ifndef UNIV_HOTBACKUP
/** Compute a hash value of a prefix of a leaf page record.
@param[in] rec leaf page record
@param[in] offsets rec_get_offsets(rec)
@param[in] n_fields number of complete fields to fold
@param[in] n_bytes number of bytes to fold in the last field
@param[in] fold fold value of the index identifier
@param[in] index index where the record resides
@return the folded value */
UNIV_INLINE
ulint rec_fold(const rec_t *rec, const ulint *offsets, ulint n_fields,
ulint n_bytes, ulint fold, const dict_index_t *index) {
uint16_t i;
const byte *data;
ulint len;
ulint n_fields_rec;
ut_ad(rec_offs_validate(rec, NULL, offsets));
ut_ad(rec_validate(rec, offsets));
ut_ad(n_fields > 0 || n_bytes > 0);
n_fields_rec = rec_offs_n_fields(offsets);
ut_ad(n_fields <= n_fields_rec);
ut_ad(n_fields < n_fields_rec || n_bytes == 0);
if (n_fields > n_fields_rec) {
n_fields = n_fields_rec;
}
if (n_fields == n_fields_rec) {
n_bytes = 0;
}
for (i = 0; i < n_fields; i++) {
data = rec_get_nth_field_instant(rec, offsets, i, index, &len);
if (len != UNIV_SQL_NULL) {
fold = ut_fold_ulint_pair(fold, ut_fold_binary(data, len));
}
}
if (n_bytes > 0) {
data = rec_get_nth_field_instant(rec, offsets, i, index, &len);
if (len != UNIV_SQL_NULL) {
if (len > n_bytes) {
len = n_bytes;
}
fold = ut_fold_ulint_pair(fold, ut_fold_binary(data, len));
}
}
return (fold);
}
#endif /* !UNIV_HOTBACKUP */
/** Get the length of the number of fields for any new style record.
@param[in] n_fields number of fields in the record
@return length of specified number of fields */
UNIV_INLINE
uint8_t rec_get_n_fields_length(ulint n_fields) {
return (n_fields > REC_N_FIELDS_ONE_BYTE_MAX ? 2 : 1);
}
/** Set the number of fields for one new style leaf page record.
This is only needed for table after instant ADD COLUMN.
@param[in,out] rec leaf page record
@param[in] n_fields number of fields in the record
@return the length of the n_fields occupies */
UNIV_INLINE
uint8_t rec_set_n_fields(rec_t *rec, ulint n_fields) {
byte *ptr = rec - (REC_N_NEW_EXTRA_BYTES + 1);
ut_ad(n_fields < REC_MAX_N_FIELDS);
if (n_fields <= REC_N_FIELDS_ONE_BYTE_MAX) {
*ptr = static_cast<byte>(n_fields);
return (1);
}
--ptr;
*ptr++ = static_cast<byte>(n_fields & 0xFF);
*ptr = static_cast<byte>(n_fields >> 8);
ut_ad((*ptr & 0x80) == 0);
*ptr |= REC_N_FIELDS_TWO_BYTES_FLAG;
return (2);
}
/** Gets the value of the specified field in the record in old style.
This is only used for record from instant index, which is clustered
index and has some instantly added columns.
@param[in] rec physical record
@param[in] n index of the field
@param[in] index clustered index where the record resides
@param[out] len length of the field, UNIV_SQL if SQL null
@return value of the field, could be either pointer to rec or default value */
UNIV_INLINE
const byte *rec_get_nth_field_old_instant(const rec_t *rec, uint16_t n,
const dict_index_t *index,
ulint *len) {
ut_a(index != nullptr);
if (n < rec_get_n_fields_old_raw(rec)) {
return (rec_get_nth_field_old(rec, n, len));
}
const byte *field;
ut_ad(index->has_instant_cols());
field = index->get_nth_default(n, len);
return (field);
}
/** Gets the value of the specified field in the record.
This is only used when there is possibility that the record comes from the
clustered index, which has some instantly add columns
@param[in] rec record
@param[in] offsets array returned by rec_get_offsets()
@param[in] n index of the field
@param[in] index clustered index where the record resides
@param[in,out] len length of the field, UNIV_SQL_NULL if SQL null
@return value of the field, could be either pointer to rec or default value */
UNIV_INLINE
const byte *rec_get_nth_field_instant(const rec_t *rec, const ulint *offsets,
ulint n, const dict_index_t *index,
ulint *len) {
ulint off = rec_get_nth_field_offs(offsets, n, len);
if (*len != UNIV_SQL_ADD_COL_DEFAULT) {
return (rec + off);
}
ut_a(index != nullptr);
ut_ad(index->has_instant_cols());
return (index->get_nth_default(n, len));
}