polardbxengine/storage/innobase/buf/buf0dblwr.cc

1235 lines
39 KiB
C++

/*****************************************************************************
Copyright (c) 1995, 2019, Oracle and/or its affiliates. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License, version 2.0, as published by the
Free Software Foundation.
This program is also distributed with certain software (including but not
limited to OpenSSL) that is licensed under separate terms, as designated in a
particular file or component or in included license documentation. The authors
of MySQL hereby grant you an additional permission to link the program and
your derivative works with the separately licensed software that they have
included with MySQL.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0,
for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*****************************************************************************/
/** @file buf/buf0dblwr.cc
Doublwrite buffer module
Created 2011/12/19
*******************************************************/
#include <sys/types.h>
#include "buf0buf.h"
#include "buf0checksum.h"
#include "buf0dblwr.h"
#include "ha_prototypes.h"
#include "my_compiler.h"
#include "my_inttypes.h"
#include "page0zip.h"
#include "srv0srv.h"
#include "srv0start.h"
#include "trx0purge.h"
/** The doublewrite buffer */
buf_dblwr_t *buf_dblwr = NULL;
/** Set to TRUE when the doublewrite buffer is being created */
ibool buf_dblwr_being_created = FALSE;
/** Determines if a page number is located inside the doublewrite buffer.
@return true if the location is inside the two blocks of the
doublewrite buffer */
ibool buf_dblwr_page_inside(page_no_t page_no) /*!< in: page number */
{
if (buf_dblwr == NULL) {
return (FALSE);
}
if (page_no >= buf_dblwr->block1 &&
page_no < buf_dblwr->block1 + TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) {
return (TRUE);
}
if (page_no >= buf_dblwr->block2 &&
page_no < buf_dblwr->block2 + TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) {
return (TRUE);
}
return (FALSE);
}
/** Calls buf_page_get() on the TRX_SYS_PAGE and returns a pointer to the
doublewrite buffer within it.
@return pointer to the doublewrite buffer within the filespace header
page. */
UNIV_INLINE
byte *buf_dblwr_get(mtr_t *mtr) /*!< in/out: MTR to hold the page latch */
{
buf_block_t *block;
block = buf_page_get(page_id_t(TRX_SYS_SPACE, TRX_SYS_PAGE_NO),
univ_page_size, RW_X_LATCH, mtr);
buf_block_dbg_add_level(block, SYNC_NO_ORDER_CHECK);
return (buf_block_get_frame(block) + TRX_SYS_DOUBLEWRITE);
}
/** Flush a batch of writes to the datafiles that have already been
written to the dblwr buffer on disk. */
void buf_dblwr_sync_datafiles() {
/* Wake possible simulated aio thread to actually post the
writes to the operating system */
os_aio_simulated_wake_handler_threads();
/* Wait that all async writes to tablespaces have been posted to
the OS */
os_aio_wait_until_no_pending_writes();
/* Now we flush the data to disk (for example, with fsync) */
fil_flush_file_spaces(to_int(FIL_TYPE_TABLESPACE));
}
/** Creates or initialializes the doublewrite buffer at a database start. */
static void buf_dblwr_init(
byte *doublewrite) /*!< in: pointer to the doublewrite buf
header on trx sys page */
{
ulint buf_size;
buf_dblwr = static_cast<buf_dblwr_t *>(ut_zalloc_nokey(sizeof(buf_dblwr_t)));
/* There are two blocks of same size in the doublewrite
buffer. */
buf_size = 2 * TRX_SYS_DOUBLEWRITE_BLOCK_SIZE;
/* There must be atleast one buffer for single page writes
and one buffer for batch writes. */
ut_a(srv_doublewrite_batch_size > 0 && srv_doublewrite_batch_size < buf_size);
mutex_create(LATCH_ID_BUF_DBLWR, &buf_dblwr->mutex);
buf_dblwr->b_event = os_event_create("dblwr_batch_event");
buf_dblwr->s_event = os_event_create("dblwr_single_event");
buf_dblwr->first_free = 0;
buf_dblwr->s_reserved = 0;
buf_dblwr->b_reserved = 0;
buf_dblwr->block1 =
mach_read_from_4(doublewrite + TRX_SYS_DOUBLEWRITE_BLOCK1);
buf_dblwr->block2 =
mach_read_from_4(doublewrite + TRX_SYS_DOUBLEWRITE_BLOCK2);
buf_dblwr->in_use =
static_cast<bool *>(ut_zalloc_nokey(buf_size * sizeof(bool)));
buf_dblwr->write_buf_unaligned =
static_cast<byte *>(ut_malloc_nokey((1 + buf_size) * UNIV_PAGE_SIZE));
buf_dblwr->write_buf = static_cast<byte *>(
ut_align(buf_dblwr->write_buf_unaligned, UNIV_PAGE_SIZE));
buf_dblwr->buf_block_arr =
static_cast<buf_page_t **>(ut_zalloc_nokey(buf_size * sizeof(void *)));
}
/** Creates the doublewrite buffer to a new InnoDB installation. The header of
the doublewrite buffer is placed on the trx system header page.
@return true if successful, false if not. */
MY_ATTRIBUTE((warn_unused_result))
bool buf_dblwr_create(void) {
buf_block_t *block2;
buf_block_t *new_block;
byte *doublewrite;
byte *fseg_header;
page_no_t page_no;
page_no_t prev_page_no;
ulint i;
mtr_t mtr;
static const char *cannot_continue =
"Cannot create doublewrite buffer: you must increase"
" your buffer pool size. Cannot continue operation.";
if (buf_dblwr) {
/* Already inited */
return (true);
}
start_again:
mtr_start(&mtr);
buf_dblwr_being_created = TRUE;
doublewrite = buf_dblwr_get(&mtr);
if (mach_read_from_4(doublewrite + TRX_SYS_DOUBLEWRITE_MAGIC) ==
TRX_SYS_DOUBLEWRITE_MAGIC_N) {
/* The doublewrite buffer has already been created:
just read in some numbers */
buf_dblwr_init(doublewrite);
mtr_commit(&mtr);
buf_dblwr_being_created = FALSE;
return (true);
}
ib::info(ER_IB_MSG_95) << "Doublewrite buffer not found: creating new";
ulint min_doublewrite_size =
((2 * TRX_SYS_DOUBLEWRITE_BLOCK_SIZE + FSP_EXTENT_SIZE / 2 + 100) *
UNIV_PAGE_SIZE);
if (buf_pool_get_curr_size() < min_doublewrite_size) {
ib::error(ER_IB_MSG_96) << cannot_continue;
mtr_commit(&mtr);
buf_dblwr_being_created = FALSE;
return (false);
}
block2 = fseg_create(TRX_SYS_SPACE, TRX_SYS_PAGE_NO,
TRX_SYS_DOUBLEWRITE + TRX_SYS_DOUBLEWRITE_FSEG, &mtr);
/* fseg_create acquires a second latch on the page,
therefore we must declare it: */
buf_block_dbg_add_level(block2, SYNC_NO_ORDER_CHECK);
if (block2 == NULL) {
ib::error(ER_IB_MSG_97) << cannot_continue;
/* We exit without committing the mtr to prevent
its modifications to the database getting to disk */
mtr_commit(&mtr);
buf_dblwr_being_created = FALSE;
return (false);
}
fseg_header = doublewrite + TRX_SYS_DOUBLEWRITE_FSEG;
prev_page_no = 0;
for (i = 0; i < 2 * TRX_SYS_DOUBLEWRITE_BLOCK_SIZE + FSP_EXTENT_SIZE / 2;
i++) {
new_block =
fseg_alloc_free_page(fseg_header, prev_page_no + 1, FSP_UP, &mtr);
if (new_block == NULL) {
ib::error(ER_IB_MSG_98) << cannot_continue;
mtr_commit(&mtr);
buf_dblwr_being_created = FALSE;
return (false);
}
/* We read the allocated pages to the buffer pool;
when they are written to disk in a flush, the space
id and page number fields are also written to the
pages. When we at database startup read pages
from the doublewrite buffer, we know that if the
space id and page number in them are the same as
the page position in the tablespace, then the page
has not been written to in doublewrite. */
ut_ad(rw_lock_get_x_lock_count(&new_block->lock) == 1);
page_no = new_block->page.id.page_no();
if (i == FSP_EXTENT_SIZE / 2) {
ut_a(page_no == FSP_EXTENT_SIZE);
mlog_write_ulint(doublewrite + TRX_SYS_DOUBLEWRITE_BLOCK1, page_no,
MLOG_4BYTES, &mtr);
mlog_write_ulint(
doublewrite + TRX_SYS_DOUBLEWRITE_REPEAT + TRX_SYS_DOUBLEWRITE_BLOCK1,
page_no, MLOG_4BYTES, &mtr);
} else if (i == FSP_EXTENT_SIZE / 2 + TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) {
ut_a(page_no == 2 * FSP_EXTENT_SIZE);
mlog_write_ulint(doublewrite + TRX_SYS_DOUBLEWRITE_BLOCK2, page_no,
MLOG_4BYTES, &mtr);
mlog_write_ulint(
doublewrite + TRX_SYS_DOUBLEWRITE_REPEAT + TRX_SYS_DOUBLEWRITE_BLOCK2,
page_no, MLOG_4BYTES, &mtr);
} else if (i > FSP_EXTENT_SIZE / 2) {
ut_a(page_no == prev_page_no + 1);
}
if (((i + 1) & 15) == 0) {
/* rw_locks can only be recursively x-locked
2048 times. (on 32 bit platforms,
(lint) 0 - (X_LOCK_DECR * 2049)
is no longer a negative number, and thus
lock_word becomes like a shared lock).
For 4k page size this loop will
lock the fseg header too many times. Since
this code is not done while any other threads
are active, restart the MTR occasionally. */
mtr_commit(&mtr);
mtr_start(&mtr);
doublewrite = buf_dblwr_get(&mtr);
fseg_header = doublewrite + TRX_SYS_DOUBLEWRITE_FSEG;
}
prev_page_no = page_no;
}
mlog_write_ulint(doublewrite + TRX_SYS_DOUBLEWRITE_MAGIC,
TRX_SYS_DOUBLEWRITE_MAGIC_N, MLOG_4BYTES, &mtr);
mlog_write_ulint(
doublewrite + TRX_SYS_DOUBLEWRITE_MAGIC + TRX_SYS_DOUBLEWRITE_REPEAT,
TRX_SYS_DOUBLEWRITE_MAGIC_N, MLOG_4BYTES, &mtr);
mlog_write_ulint(doublewrite + TRX_SYS_DOUBLEWRITE_SPACE_ID_STORED,
TRX_SYS_DOUBLEWRITE_SPACE_ID_STORED_N, MLOG_4BYTES, &mtr);
mtr_commit(&mtr);
/* Flush the modified pages to disk and make a checkpoint */
log_make_latest_checkpoint();
/* Remove doublewrite pages from LRU */
buf_pool_invalidate();
ib::info(ER_IB_MSG_99) << "Doublewrite buffer created";
goto start_again;
}
/**
At database startup initializes the doublewrite buffer memory structure if
we already have a doublewrite buffer created in the data files. If we are
upgrading to an InnoDB version which supports multiple tablespaces, then this
function performs the necessary update operations. If we are in a crash
recovery, this function loads the pages from double write buffer into memory.
@param[in] file File handle
@param[in] path Path name of file
@return DB_SUCCESS or error code */
dberr_t buf_dblwr_init_or_load_pages(pfs_os_file_t file, const char *path) {
byte *buf;
byte *page;
page_no_t block1;
page_no_t block2;
space_id_t space_id;
byte *read_buf;
byte *doublewrite;
byte *unaligned_read_buf;
ibool reset_space_ids = FALSE;
recv_dblwr_t &recv_dblwr = recv_sys->dblwr;
/* We do the file i/o past the buffer pool */
unaligned_read_buf = static_cast<byte *>(ut_malloc_nokey(2 * UNIV_PAGE_SIZE));
read_buf = static_cast<byte *>(ut_align(unaligned_read_buf, UNIV_PAGE_SIZE));
/* Read the trx sys header to check if we are using the doublewrite
buffer */
dberr_t err;
IORequest read_request(IORequest::READ);
read_request.disable_compression();
err = os_file_read(read_request, path, file, read_buf,
TRX_SYS_PAGE_NO * UNIV_PAGE_SIZE, UNIV_PAGE_SIZE);
if (err != DB_SUCCESS) {
ib::error(ER_IB_MSG_100)
<< "Failed to read the system tablespace header page";
ut_free(unaligned_read_buf);
return (err);
}
doublewrite = read_buf + TRX_SYS_DOUBLEWRITE;
if (mach_read_from_4(doublewrite + TRX_SYS_DOUBLEWRITE_MAGIC) ==
TRX_SYS_DOUBLEWRITE_MAGIC_N) {
/* The doublewrite buffer has been created */
buf_dblwr_init(doublewrite);
block1 = buf_dblwr->block1;
block2 = buf_dblwr->block2;
buf = buf_dblwr->write_buf;
} else {
ut_free(unaligned_read_buf);
return (DB_SUCCESS);
}
if (mach_read_from_4(doublewrite + TRX_SYS_DOUBLEWRITE_SPACE_ID_STORED) !=
TRX_SYS_DOUBLEWRITE_SPACE_ID_STORED_N) {
/* We are upgrading from a version < 4.1.x to a version where
multiple tablespaces are supported. We must reset the space id
field in the pages in the doublewrite buffer because starting
from this version the space id is stored to
FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID. */
reset_space_ids = TRUE;
ib::info(ER_IB_MSG_1266)
<< "Resetting space id's in the doublewrite buffer";
}
/* Read the pages from the doublewrite buffer to memory */
err = os_file_read(read_request, path, file, buf, block1 * UNIV_PAGE_SIZE,
TRX_SYS_DOUBLEWRITE_BLOCK_SIZE * UNIV_PAGE_SIZE);
if (err != DB_SUCCESS) {
ib::error(ER_IB_MSG_101) << "Failed to read the first double write buffer "
"extent";
ut_free(unaligned_read_buf);
return (err);
}
err = os_file_read(read_request, path, file,
buf + TRX_SYS_DOUBLEWRITE_BLOCK_SIZE * UNIV_PAGE_SIZE,
block2 * UNIV_PAGE_SIZE,
TRX_SYS_DOUBLEWRITE_BLOCK_SIZE * UNIV_PAGE_SIZE);
if (err != DB_SUCCESS) {
ib::error(ER_IB_MSG_102) << "Failed to read the second double write buffer "
"extent";
ut_free(unaligned_read_buf);
return (err);
}
/* Check if any of these pages is half-written in data files, in the
intended position */
page = buf;
for (page_no_t i = 0; i < TRX_SYS_DOUBLEWRITE_BLOCK_SIZE * 2; i++) {
if (reset_space_ids) {
page_no_t source_page_no;
space_id = 0;
mach_write_to_4(page + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID, space_id);
/* We do not need to calculate new checksums for the
pages because the field .._SPACE_ID does not affect
them. Write the page back to where we read it from. */
if (i < TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) {
source_page_no = block1 + i;
} else {
source_page_no = block2 + i - TRX_SYS_DOUBLEWRITE_BLOCK_SIZE;
}
IORequest write_request(IORequest::WRITE);
/* Recovered data file pages are written out
as uncompressed. */
write_request.disable_compression();
err = os_file_write(write_request, path, file, page,
source_page_no * UNIV_PAGE_SIZE, UNIV_PAGE_SIZE);
if (err != DB_SUCCESS) {
ib::error(ER_IB_MSG_103) << "Failed to write to the double write"
" buffer";
ut_free(unaligned_read_buf);
return (err);
}
} else {
recv_dblwr.add(page);
}
page += univ_page_size.physical();
}
if (reset_space_ids) {
os_file_flush(file);
}
ut_free(unaligned_read_buf);
return (DB_SUCCESS);
}
/** Recover a single page
@param[in] page_no_dblwr Page number in the doublewrite buffer
@param[in,out] space Tablespace instance to write to
@param[in] page_no Page number in the tablespace
@param[in] page Page data to write */
static void buf_dblwr_recover_page(page_no_t page_no_dblwr, fil_space_t *space,
page_no_t page_no, const page_t *page) {
byte *ptr;
byte *read_buf;
ptr = static_cast<byte *>(ut_malloc_nokey(2 * UNIV_PAGE_SIZE));
read_buf = static_cast<byte *>(ut_align(ptr, UNIV_PAGE_SIZE));
fil_space_open_if_needed(space);
if (page_no >= space->size) {
/* Do not report the warning if the tablespace is
going to be truncated. */
if (undo::is_active(space->id)) {
ib::warn(ER_IB_MSG_104) << "Page " << page_no_dblwr
<< " in the doublewrite buffer is"
" not within space bounds: page "
<< page_id_t(space->id, page_no);
}
} else {
const page_size_t page_size(space->flags);
const page_id_t page_id(space->id, page_no);
/* We want to ensure that for partial reads the
unread portion of the page is NUL. */
memset(read_buf, 0x0, page_size.physical());
IORequest request;
request.dblwr_recover();
/* Read in the actual page from the file */
dberr_t err = fil_io(request, true, page_id, page_size, 0,
page_size.physical(), read_buf, NULL);
if (err != DB_SUCCESS) {
ib::warn(ER_IB_MSG_105)
<< "Double write buffer recovery: " << page_id << " read failed with "
<< "error: " << ut_strerr(err);
}
/* Check if the page is corrupt */
BlockReporter block(true, read_buf, page_size,
fsp_is_checksum_disabled(space->id));
if (block.is_corrupted()) {
ib::info(ER_IB_MSG_106) << "Database page corruption or"
<< " a failed file read of page " << page_id
<< ". Trying to recover it from the"
<< " doublewrite buffer.";
BlockReporter dblwr_buf_page(true, page, page_size,
fsp_is_checksum_disabled(space->id));
if (dblwr_buf_page.is_corrupted()) {
ib::error(ER_IB_MSG_107) << "Dump of the page:";
buf_page_print(read_buf, page_size, BUF_PAGE_PRINT_NO_CRASH);
ib::error(ER_IB_MSG_108) << "Dump of corresponding"
" page in doublewrite buffer:";
buf_page_print(page, page_size, BUF_PAGE_PRINT_NO_CRASH);
ib::fatal(ER_IB_MSG_109) << "The page in the"
" doublewrite buffer is"
" corrupt. Cannot continue"
" operation. You can try to"
" recover the database with"
" innodb_force_recovery=6";
}
} else {
bool t1 = buf_page_is_zeroes(read_buf, page_size);
bool t2 = buf_page_is_zeroes(page, page_size);
BlockReporter reporter = BlockReporter(
true, page, page_size, fsp_is_checksum_disabled(space->id));
bool t3 = reporter.is_corrupted();
if (t1 && !(t2 || t3)) {
/* Database page contained only
zeroes, while a valid copy is
available in dblwr buffer. */
} else {
ut_free(ptr);
return;
}
}
/* Recovered data file pages are written out
as uncompressed. */
IORequest write_request(IORequest::WRITE);
write_request.disable_compression();
/* Write the good page from the doublewrite
buffer to the intended position. */
err = fil_io(write_request, true, page_id, page_size, 0,
page_size.physical(), const_cast<byte *>(page), NULL);
ut_a(err == DB_SUCCESS);
ib::info(ER_IB_MSG_110)
<< "Recovered page " << page_id << " from the doublewrite buffer.";
}
ut_free(ptr);
}
/** Process and remove the double write buffer pages for all tablespaces. */
void buf_dblwr_process() {
page_no_t page_no_dblwr = 0;
recv_dblwr_t &dblwr = recv_sys->dblwr;
/* For cloned database double write pages should be ignored. */
if (recv_sys->is_cloned_db) {
dblwr.pages.clear();
}
for (auto i = dblwr.pages.begin(); i != dblwr.pages.end();
++i, ++page_no_dblwr) {
const byte *page = *i;
page_no_t page_no = page_get_page_no(page);
space_id_t space_id = page_get_space_id(page);
fil_space_t *space = fil_space_get(space_id);
if (space == nullptr) {
/* We will have to lazily apply this page
when we see a MLOG_FILE_OPEN redo record
during recovery. */
using Page = recv_dblwr_t::Page;
dblwr.deferred.push_back(Page(page_no_dblwr, page));
} else {
buf_dblwr_recover_page(page_no_dblwr, space, page_no, page);
}
}
dblwr.pages.clear();
fil_flush_file_spaces(to_int(FIL_TYPE_TABLESPACE));
}
/** Recover pages from the double write buffer for a specific tablespace.
The pages that were read from the doublewrite buffer are written to the
tablespace they belong to.
@param[in] space Tablespace instance */
void buf_dblwr_recover_pages(fil_space_t *space) {
recv_dblwr_t &dblwr = recv_sys->dblwr;
for (auto it = dblwr.deferred.begin(); it != dblwr.deferred.end();
/* No op */) {
using Page = recv_dblwr_t::Page;
Page &page = *it;
space_id_t space_id = page_get_space_id(page.m_page);
if (space_id == space->id) {
page_no_t page_no;
page_no = page_get_page_no(page.m_page);
buf_dblwr_recover_page(0, space, page_no, page.m_page);
page.close();
it = dblwr.deferred.erase(it);
} else {
++it;
}
}
fil_flush_file_spaces(to_int(FIL_TYPE_TABLESPACE));
}
/** Frees doublewrite buffer. */
void buf_dblwr_free(void) {
/* Free the double write data structures. */
ut_ad(buf_dblwr->s_reserved == 0);
ut_ad(buf_dblwr->b_reserved == 0);
os_event_destroy(buf_dblwr->b_event);
os_event_destroy(buf_dblwr->s_event);
ut_free(buf_dblwr->write_buf_unaligned);
buf_dblwr->write_buf_unaligned = NULL;
ut_free(buf_dblwr->buf_block_arr);
buf_dblwr->buf_block_arr = NULL;
ut_free(buf_dblwr->in_use);
buf_dblwr->in_use = NULL;
mutex_free(&buf_dblwr->mutex);
ut_free(buf_dblwr);
buf_dblwr = NULL;
}
/** Updates the doublewrite buffer when an IO request is completed. */
void buf_dblwr_update(
const buf_page_t *bpage, /*!< in: buffer block descriptor */
buf_flush_t flush_type) /*!< in: flush type */
{
if (!srv_use_doublewrite_buf || buf_dblwr == NULL ||
fsp_is_system_temporary(bpage->id.space())) {
return;
}
ut_ad(!srv_read_only_mode);
switch (flush_type) {
case BUF_FLUSH_LIST:
case BUF_FLUSH_LRU:
mutex_enter(&buf_dblwr->mutex);
ut_ad(buf_dblwr->batch_running);
ut_ad(buf_dblwr->b_reserved > 0);
ut_ad(buf_dblwr->b_reserved <= buf_dblwr->first_free);
buf_dblwr->b_reserved--;
if (buf_dblwr->b_reserved == 0) {
mutex_exit(&buf_dblwr->mutex);
/* This will finish the batch. Sync data files
to the disk. */
fil_flush_file_spaces(to_int(FIL_TYPE_TABLESPACE));
mutex_enter(&buf_dblwr->mutex);
/* We can now reuse the doublewrite memory buffer: */
buf_dblwr->first_free = 0;
buf_dblwr->batch_running = false;
os_event_set(buf_dblwr->b_event);
}
mutex_exit(&buf_dblwr->mutex);
break;
case BUF_FLUSH_SINGLE_PAGE: {
const ulint size = 2 * TRX_SYS_DOUBLEWRITE_BLOCK_SIZE;
ulint i;
mutex_enter(&buf_dblwr->mutex);
for (i = srv_doublewrite_batch_size; i < size; ++i) {
if (buf_dblwr->buf_block_arr[i] == bpage) {
buf_dblwr->s_reserved--;
buf_dblwr->buf_block_arr[i] = NULL;
buf_dblwr->in_use[i] = false;
break;
}
}
/* The block we are looking for must exist as a
reserved block. */
ut_a(i < size);
}
os_event_set(buf_dblwr->s_event);
mutex_exit(&buf_dblwr->mutex);
break;
case BUF_FLUSH_N_TYPES:
ut_error;
}
}
/** Check the LSN values on the page. */
static void buf_dblwr_check_page_lsn(
const page_t *page) /*!< in: page to check */
{
if (memcmp(page + (FIL_PAGE_LSN + 4),
page + (UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM + 4), 4)) {
const ulint lsn1 = mach_read_from_4(page + FIL_PAGE_LSN + 4);
const ulint lsn2 = mach_read_from_4(page + UNIV_PAGE_SIZE -
FIL_PAGE_END_LSN_OLD_CHKSUM + 4);
ib::error(ER_IB_MSG_111) << "The page to be written seems corrupt!"
" The low 4 bytes of LSN fields do not match"
" ("
<< lsn1 << " != " << lsn2
<< ")!"
" Noticed in the buffer pool.";
}
}
/** Asserts when a corrupt block is find during writing out data to the
disk. */
static void buf_dblwr_assert_on_corrupt_block(
const buf_block_t *block) /*!< in: block to check */
{
buf_page_print(block->frame, univ_page_size, BUF_PAGE_PRINT_NO_CRASH);
ib::fatal(ER_IB_MSG_112)
<< "Apparent corruption of an index page " << block->page.id
<< " to be written to data file. We intentionally crash"
" the server to prevent corrupt data from ending up in"
" data files.";
}
/** Check the LSN values on the page with which this block is associated.
Also validate the page if the option is set. */
static void buf_dblwr_check_block(
const buf_block_t *block) /*!< in: block to check */
{
ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE);
switch (fil_page_get_type(block->frame)) {
case FIL_PAGE_INDEX:
case FIL_PAGE_RTREE:
case FIL_PAGE_SDI:
if (page_is_comp(block->frame)) {
if (page_simple_validate_new(block->frame)) {
return;
}
} else if (page_simple_validate_old(block->frame)) {
return;
}
/* While it is possible that this is not an index page
but just happens to have wrongly set FIL_PAGE_TYPE,
such pages should never be modified to without also
adjusting the page type during page allocation or
buf_flush_init_for_writing() or fil_page_reset_type(). */
break;
case FIL_PAGE_TYPE_FSP_HDR:
case FIL_PAGE_IBUF_BITMAP:
case FIL_PAGE_TYPE_UNKNOWN:
/* Do not complain again, we already reset this field. */
case FIL_PAGE_UNDO_LOG:
case FIL_PAGE_INODE:
case FIL_PAGE_IBUF_FREE_LIST:
case FIL_PAGE_TYPE_SYS:
case FIL_PAGE_TYPE_TRX_SYS:
case FIL_PAGE_TYPE_XDES:
case FIL_PAGE_TYPE_BLOB:
case FIL_PAGE_TYPE_ZBLOB:
case FIL_PAGE_TYPE_ZBLOB2:
case FIL_PAGE_SDI_BLOB:
case FIL_PAGE_SDI_ZBLOB:
case FIL_PAGE_TYPE_LOB_INDEX:
case FIL_PAGE_TYPE_LOB_DATA:
case FIL_PAGE_TYPE_LOB_FIRST:
case FIL_PAGE_TYPE_ZLOB_FIRST:
case FIL_PAGE_TYPE_ZLOB_DATA:
case FIL_PAGE_TYPE_ZLOB_INDEX:
case FIL_PAGE_TYPE_ZLOB_FRAG:
case FIL_PAGE_TYPE_ZLOB_FRAG_ENTRY:
case FIL_PAGE_TYPE_RSEG_ARRAY:
/* TODO: validate also non-index pages */
return;
case FIL_PAGE_TYPE_ALLOCATED:
/* empty pages should never be flushed */
break;
}
buf_dblwr_assert_on_corrupt_block(block);
}
/** Writes a page that has already been written to the doublewrite buffer
to the datafile. It is the job of the caller to sync the datafile. */
static void buf_dblwr_write_block_to_datafile(
const buf_page_t *bpage, /*!< in: page to write */
bool sync) /*!< in: true if sync IO
is requested */
{
ut_a(buf_page_in_file(bpage));
ulint type = IORequest::WRITE;
if (sync) {
type |= IORequest::DO_NOT_WAKE;
}
dberr_t err;
IORequest request(type);
if (bpage->zip.data != NULL) {
ut_ad(bpage->size.is_compressed());
err =
fil_io(request, sync, bpage->id, bpage->size, 0, bpage->size.physical(),
(void *)bpage->zip.data, (void *)bpage);
ut_a(err == DB_SUCCESS);
} else {
ut_ad(!bpage->size.is_compressed());
/* Our IO API is common for both reads and writes and is
therefore geared towards a non-const parameter. */
buf_block_t *block =
reinterpret_cast<buf_block_t *>(const_cast<buf_page_t *>(bpage));
ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE);
buf_dblwr_check_page_lsn(block->frame);
err = fil_io(request, sync, bpage->id, bpage->size, 0,
bpage->size.physical(), block->frame, block);
ut_a(err == DB_SUCCESS);
}
}
/** Flushes possible buffered writes from the doublewrite memory buffer to disk,
and also wakes up the aio thread if simulated aio is used. It is very
important to call this function after a batch of writes has been posted,
and also when we may have to wait for a page latch! Otherwise a deadlock
of threads can occur. */
void buf_dblwr_flush_buffered_writes(void) {
ulint len;
dberr_t err;
byte *write_buf;
ulint first_free;
if (!srv_use_doublewrite_buf || buf_dblwr == NULL) {
/* Sync the writes to the disk. */
buf_dblwr_sync_datafiles();
return;
}
ut_ad(!srv_read_only_mode);
try_again:
mutex_enter(&buf_dblwr->mutex);
/* Write first to doublewrite buffer blocks. We use synchronous
aio and thus know that file write has been completed when the
control returns. */
if (buf_dblwr->first_free == 0) {
mutex_exit(&buf_dblwr->mutex);
/* Wake possible simulated aio thread as there could be
system temporary tablespace pages active for flushing.
Note: system temporary tablespace pages are not scheduled
for doublewrite. */
os_aio_simulated_wake_handler_threads();
return;
}
if (buf_dblwr->batch_running) {
/* Another thread is running the batch right now. Wait
for it to finish. */
int64_t sig_count = os_event_reset(buf_dblwr->b_event);
mutex_exit(&buf_dblwr->mutex);
os_event_wait_low(buf_dblwr->b_event, sig_count);
goto try_again;
}
ut_a(!buf_dblwr->batch_running);
ut_ad(buf_dblwr->first_free == buf_dblwr->b_reserved);
/* Disallow anyone else to post to doublewrite buffer or to
start another batch of flushing. */
buf_dblwr->batch_running = true;
first_free = buf_dblwr->first_free;
/* Now safe to release the mutex. Note that though no other
thread is allowed to post to the doublewrite batch flushing
but any threads working on single page flushes are allowed
to proceed. */
mutex_exit(&buf_dblwr->mutex);
write_buf = buf_dblwr->write_buf;
for (ulint len2 = 0, i = 0; i < buf_dblwr->first_free;
len2 += UNIV_PAGE_SIZE, i++) {
const buf_block_t *block;
block = (buf_block_t *)buf_dblwr->buf_block_arr[i];
if (buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE ||
block->page.zip.data) {
/* No simple validate for compressed
pages exists. */
continue;
}
/* Check that the actual page in the buffer pool is
not corrupt and the LSN values are sane. */
buf_dblwr_check_block(block);
/* Check that the page as written to the doublewrite
buffer has sane LSN values. */
buf_dblwr_check_page_lsn(write_buf + len2);
}
/* Write out the first block of the doublewrite buffer */
len = ut_min(TRX_SYS_DOUBLEWRITE_BLOCK_SIZE, buf_dblwr->first_free) *
UNIV_PAGE_SIZE;
err =
fil_io(IORequestWrite, true, page_id_t(TRX_SYS_SPACE, buf_dblwr->block1),
univ_page_size, 0, len, (void *)write_buf, NULL);
ut_a(err == DB_SUCCESS);
if (buf_dblwr->first_free <= TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) {
/* No unwritten pages in the second block. */
goto flush;
}
/* Write out the second block of the doublewrite buffer. */
len =
(buf_dblwr->first_free - TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) * UNIV_PAGE_SIZE;
write_buf =
buf_dblwr->write_buf + TRX_SYS_DOUBLEWRITE_BLOCK_SIZE * UNIV_PAGE_SIZE;
err =
fil_io(IORequestWrite, true, page_id_t(TRX_SYS_SPACE, buf_dblwr->block2),
univ_page_size, 0, len, (void *)write_buf, NULL);
ut_a(err == DB_SUCCESS);
flush:
/* increment the doublewrite flushed pages counter */
srv_stats.dblwr_pages_written.add(buf_dblwr->first_free);
srv_stats.dblwr_writes.inc();
/* Now flush the doublewrite buffer data to disk */
fil_flush(TRX_SYS_SPACE);
/* We know that the writes have been flushed to disk now
and in recovery we will find them in the doublewrite buffer
blocks. Next do the writes to the intended positions. */
/* Up to this point first_free and buf_dblwr->first_free are
same because we have set the buf_dblwr->batch_running flag
disallowing any other thread to post any request but we
can't safely access buf_dblwr->first_free in the loop below.
This is so because it is possible that after we are done with
the last iteration and before we terminate the loop, the batch
gets finished in the IO helper thread and another thread posts
a new batch setting buf_dblwr->first_free to a higher value.
If this happens and we are using buf_dblwr->first_free in the
loop termination condition then we'll end up dispatching
the same block twice from two different threads. */
ut_ad(first_free == buf_dblwr->first_free);
for (ulint i = 0; i < first_free; i++) {
buf_dblwr_write_block_to_datafile(buf_dblwr->buf_block_arr[i], false);
}
/* Wake possible simulated aio thread to actually post the
writes to the operating system. We don't flush the files
at this point. We leave it to the IO helper thread to flush
datafiles when the whole batch has been processed. */
os_aio_simulated_wake_handler_threads();
}
/** Posts a buffer page for writing. If the doublewrite memory buffer
is full, calls buf_dblwr_flush_buffered_writes and waits for for free
space to appear.
@param[in] bpage buffer block to write */
void buf_dblwr_add_to_batch(buf_page_t *bpage) {
ut_a(buf_page_in_file(bpage));
ut_ad(!mutex_own(&buf_pool_from_bpage(bpage)->LRU_list_mutex));
try_again:
mutex_enter(&buf_dblwr->mutex);
ut_a(buf_dblwr->first_free <= srv_doublewrite_batch_size);
if (buf_dblwr->batch_running) {
/* This not nearly as bad as it looks. There is only
page_cleaner thread which does background flushing
in batches therefore it is unlikely to be a contention
point. The only exception is when a user thread is
forced to do a flush batch because of a sync
checkpoint. */
int64_t sig_count = os_event_reset(buf_dblwr->b_event);
mutex_exit(&buf_dblwr->mutex);
os_event_wait_low(buf_dblwr->b_event, sig_count);
goto try_again;
}
if (buf_dblwr->first_free == srv_doublewrite_batch_size) {
mutex_exit(&(buf_dblwr->mutex));
buf_dblwr_flush_buffered_writes();
goto try_again;
}
byte *p =
buf_dblwr->write_buf + univ_page_size.physical() * buf_dblwr->first_free;
if (bpage->size.is_compressed()) {
UNIV_MEM_ASSERT_RW(bpage->zip.data, bpage->size.physical());
/* Copy the compressed page and clear the rest. */
memcpy(p, bpage->zip.data, bpage->size.physical());
memset(p + bpage->size.physical(), 0x0,
univ_page_size.physical() - bpage->size.physical());
} else {
ut_a(buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE);
UNIV_MEM_ASSERT_RW(((buf_block_t *)bpage)->frame, bpage->size.logical());
memcpy(p, ((buf_block_t *)bpage)->frame, bpage->size.logical());
}
buf_dblwr->buf_block_arr[buf_dblwr->first_free] = bpage;
buf_dblwr->first_free++;
buf_dblwr->b_reserved++;
ut_ad(!buf_dblwr->batch_running);
ut_ad(buf_dblwr->first_free == buf_dblwr->b_reserved);
ut_ad(buf_dblwr->b_reserved <= srv_doublewrite_batch_size);
if (buf_dblwr->first_free == srv_doublewrite_batch_size) {
mutex_exit(&(buf_dblwr->mutex));
buf_dblwr_flush_buffered_writes();
return;
}
mutex_exit(&(buf_dblwr->mutex));
}
/** Writes a page to the doublewrite buffer on disk, sync it, then write
the page to the datafile and sync the datafile. This function is used
for single page flushes. If all the buffers allocated for single page
flushes in the doublewrite buffer are in use we wait here for one to
become free. We are guaranteed that a slot will become free because any
thread that is using a slot must also release the slot before leaving
this function. */
void buf_dblwr_write_single_page(
buf_page_t *bpage, /*!< in: buffer block to write */
bool sync) /*!< in: true if sync IO requested */
{
page_no_t i;
dberr_t err;
ulint n_slots;
page_no_t size;
page_no_t offset;
ut_a(buf_page_in_file(bpage));
ut_a(srv_use_doublewrite_buf);
ut_a(buf_dblwr != NULL);
/* total number of slots available for single page flushes
starts from srv_doublewrite_batch_size to the end of the
buffer. */
size = 2 * TRX_SYS_DOUBLEWRITE_BLOCK_SIZE;
ut_a(size > srv_doublewrite_batch_size);
n_slots = size - srv_doublewrite_batch_size;
if (buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE) {
/* Check that the actual page in the buffer pool is
not corrupt and the LSN values are sane. */
buf_dblwr_check_block((buf_block_t *)bpage);
/* Check that the page as written to the doublewrite
buffer has sane LSN values. */
if (!bpage->zip.data) {
buf_dblwr_check_page_lsn(((buf_block_t *)bpage)->frame);
}
}
retry:
mutex_enter(&buf_dblwr->mutex);
if (buf_dblwr->s_reserved == n_slots) {
/* All slots are reserved. */
int64_t sig_count = os_event_reset(buf_dblwr->s_event);
mutex_exit(&buf_dblwr->mutex);
os_event_wait_low(buf_dblwr->s_event, sig_count);
goto retry;
}
for (i = srv_doublewrite_batch_size; i < size; ++i) {
if (!buf_dblwr->in_use[i]) {
break;
}
}
/* We are guaranteed to find a slot. */
ut_a(i < size);
buf_dblwr->in_use[i] = true;
buf_dblwr->s_reserved++;
buf_dblwr->buf_block_arr[i] = bpage;
/* increment the doublewrite flushed pages counter */
srv_stats.dblwr_pages_written.inc();
srv_stats.dblwr_writes.inc();
mutex_exit(&buf_dblwr->mutex);
/* Lets see if we are going to write in the first or second
block of the doublewrite buffer. */
if (i < TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) {
offset = buf_dblwr->block1 + i;
} else {
offset = buf_dblwr->block2 + i - TRX_SYS_DOUBLEWRITE_BLOCK_SIZE;
}
/* We deal with compressed and uncompressed pages a little
differently here. In case of uncompressed pages we can
directly write the block to the allocated slot in the
doublewrite buffer in the system tablespace and then after
syncing the system table space we can proceed to write the page
in the datafile.
In case of compressed page we first do a memcpy of the block
to the in-memory buffer of doublewrite before proceeding to
write it. This is so because we want to pad the remaining
bytes in the doublewrite page with zeros. */
if (bpage->size.is_compressed()) {
memcpy(buf_dblwr->write_buf + univ_page_size.physical() * i,
bpage->zip.data, bpage->size.physical());
memset(buf_dblwr->write_buf + univ_page_size.physical() * i +
bpage->size.physical(),
0x0, univ_page_size.physical() - bpage->size.physical());
err = fil_io(IORequestWrite, true, page_id_t(TRX_SYS_SPACE, offset),
univ_page_size, 0, univ_page_size.physical(),
(void *)(buf_dblwr->write_buf + univ_page_size.physical() * i),
NULL);
} else {
/* It is a regular page. Write it directly to the
doublewrite buffer */
err = fil_io(IORequestWrite, true, page_id_t(TRX_SYS_SPACE, offset),
univ_page_size, 0, univ_page_size.physical(),
(void *)((buf_block_t *)bpage)->frame, NULL);
}
ut_a(err == DB_SUCCESS);
/* Now flush the doublewrite buffer data to disk */
fil_flush(TRX_SYS_SPACE);
/* We know that the write has been flushed to disk now
and during recovery we will find it in the doublewrite buffer
blocks. Next do the write to the intended position. */
buf_dblwr_write_block_to_datafile(bpage, sync);
}
/** Constructor
@param[in] no Doublewrite page number
@param[in] page Page read from no */
recv_dblwr_t::Page::Page(page_no_t no, const byte *page) : m_no(no) {
m_ptr = static_cast<byte *>(ut_malloc_nokey(UNIV_PAGE_SIZE * 2));
m_page = static_cast<byte *>(ut_align(m_ptr, UNIV_PAGE_SIZE));
ut_a(m_ptr != nullptr);
ut_a(m_page != nullptr);
memcpy(m_page, page, UNIV_PAGE_SIZE);
}