polardbxengine/mysql-test/suite/xengine_stress/rqg/conf/optimizer_no_subquery.yy

451 lines
20 KiB
Plaintext

# Copyright (C) 2008-2010 Sun Microsystems, Inc. All rights reserved.
# Use is subject to license terms.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; version 2 of the License.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
# USA
# **NOTE** Joins for this grammar are currently not working as intended.
# For example, if we have tables 1, 2, and 3, we end up with ON conditions that
# only involve tables 2 and 3.
# This will be fixed, but initial attempts at altering this had a negative
# impact on the coverage the test was providing. To be fixed when scheduling
# permits. We are still seeing significant coverage with the grammar as-is.
################################################################################
# optimizer_no_subquery.yy: Random Query Generator grammar for testing #
# non-subquery optimizations. This grammar #
# *should* hit the optimizations listed here: #
# https://inside.mysql.com/wiki/Optimizer_grammar_worksheet #
# see: WL#5006 Random Query Generator testing of Azalea Optimizer- subqueries #
# https://intranet.mysql.com/worklog/QA-Sprint/?tid=5006 #
# #
# recommendations: #
# queries: 10k+. We can see a lot with lower values, but over 10k is #
# best. The intersect optimization happens with low frequency #
# so larger values help us to hit it at least some of the time #
# engines: MyISAM, Innodb, Memory. Certain optimizations are only hit with #
# one engine or another and we should use both to ensure we #
# are getting maximum coverage #
# Validators: ResultsetComparatorSimplify #
# - used on server-server comparisons #
# Transformer - used on a single server #
# - creates equivalent versions of a single query #
# SelectStability - used on a single server #
# - ensures the same query produces stable result sets #
################################################################################
################################################################################
# The perl code in {} helps us with bookkeeping for writing more sensible #
# queries. We need to keep track of these items to ensure we get interesting #
# and stable queries that find bugs rather than wondering if our query is #
# dodgy. #
################################################################################
query:
{ @nonaggregates = () ; $tables = 0 ; $fields = 0 ; "" } query_type ;
query_type:
main_select | main_select | main_select | loose_scan ;
################################################################################
# The loose* rules listed below are to hit the 'Using index for group-by' #
# optimization. This optimization has some strict requirements, thus #
# we needed a separate query pattern to ensure we hit it. #
################################################################################
loose_scan:
SELECT distinct loose_select_clause
FROM new_table_item
WHERE generic_where_list
group_by_clause ;
loose_select_clause:
loose_select_list |
MIN( _field_indexed) AS { "field".++$fields } , loose_select_list |
MAX( _field_indexed) AS { "field".++$fields } , loose_select_list |
MIN( _field_indexed[invariant] ) AS { "field".++$fields }, MAX( _field_indexed[invariant] ) AS { "field".++$fields }, loose_select_list ;
loose_select_list:
loose_select_item |
loose_select_item , loose_select_list ;
loose_select_item:
_field AS { my $f = "field".++$fields ; push @nonaggregates , $f ; $f } ;
################################################################################
# The bulk of interesting things happen with this main rule #
################################################################################
main_select:
simple_select | simple_select | aggregate_select |
mixed_select | mixed_select | mixed_select ;
mixed_select:
SELECT distinct straight_join select_option select_list
FROM join_list
where_clause
group_by_clause
having_clause
order_by_clause ;
simple_select:
SELECT distinct straight_join select_option simple_select_list
FROM join_list
where_clause
optional_group_by
having_clause
order_by_clause ;
aggregate_select:
SELECT distinct straight_join select_option aggregate_select_list
FROM join_list
where_clause
optional_group_by
having_clause
order_by_clause ;
distinct: DISTINCT | | | | ;
select_option: | | | | | | | | | SQL_SMALL_RESULT ;
straight_join: | | | | | | | | | | | STRAIGHT_JOIN ;
select_list:
new_select_item |
new_select_item , select_list |
new_select_item , select_list ;
simple_select_list:
nonaggregate_select_item |
nonaggregate_select_item , simple_select_list |
nonaggregate_select_item , simple_select_list ;
aggregate_select_list:
aggregate_select_item | aggregate_select_item |
aggregate_select_item, aggregate_select_list ;
join_list:
################################################################################
# this limits us to 2 and 3 table joins / can use it if we hit #
# too many mega-join conditions which take too long to run #
################################################################################
( new_table_item join_type new_table_item ON (join_condition_list ) ) |
( new_table_item join_type ( ( new_table_item join_type new_table_item ON (join_condition_list ) ) ) ON (join_condition_list ) ) ;
join_list_disabled:
################################################################################
# preventing deep join nesting for run time / table access methods are more #
# important here - join.yy can provide deeper join coverage #
# Enabling this / swapping out with join_list above can produce some #
# time-consuming queries. #
################################################################################
new_table_item |
( new_table_item join_type join_list ON (join_condition_list ) ) ;
join_type:
INNER JOIN | left_right outer JOIN | STRAIGHT_JOIN ;
join_condition_list:
join_condition_item |
( join_condition_item ) and_or ( join_condition_item ) |
( current_table_item .`pk` arithmetic_operator previous_table_item . _field ) AND (current_table_item .`pk` arithmetic_operator previous_table_item . _field ) ;
join_condition_item:
current_table_item . int_indexed = previous_table_item . int_field_name |
current_table_item . int_field_name = previous_table_item . int_indexed |
current_table_item . `col_varchar_key` = previous_table_item . char_field_name |
current_table_item . char_field_name = previous_table_item . `col_varchar_key` |
current_table_item . int_indexed arithmetic_operator previous_table_item . int_field_name |
current_table_item . int_field_name arithmetic_operator previous_table_item . int_indexed |
current_table_item . `col_varchar_key` arithmetic_operator previous_table_item . char_field_name |
current_table_item . char_field_name arithmetic_operator previous_table_item . `col_varchar_key`;
left_right:
LEFT | RIGHT ;
outer:
| OUTER ;
where_clause:
| WHERE where_list ;
where_list:
generic_where_list |
range_predicate1_list | range_predicate2_list |
range_predicate1_list and_or generic_where_list |
range_predicate2_list and_or generic_where_list ;
generic_where_list:
where_item |
( where_list and_or where_item ) ;
not:
| | | NOT;
################################################################################
# The IS not NULL values in where_item are to hit the ref_or_null and #
# the not_exists optimizations. The LIKE '%a%' rule is to try to hit the #
# rnd_pos optimization #
################################################################################
where_item:
table1 .`pk` arithmetic_operator existing_table_item . _field |
table1 .`pk` arithmetic_operator existing_table_item . _field |
existing_table_item . _field arithmetic_operator value |
existing_table_item . _field arithmetic_operator existing_table_item . _field |
existing_table_item . _field arithmetic_operator value |
existing_table_item . _field arithmetic_operator existing_table_item . _field |
table1 .`pk` IS not NULL |
table1 . _field IS not NULL |
table1 . _field_indexed arithmetic_operator value AND ( table1 . char_field_name LIKE '%a%' OR table1.char_field_name LIKE '%b%') ;
################################################################################
# The range_predicate_1* rules below are in place to ensure we hit the #
# index_merge/sort_union optimization. #
# NOTE: combinations of the predicate_1 and predicate_2 rules tend to hit the #
# index_merge/intersect optimization #
################################################################################
range_predicate1_list:
range_predicate1_item |
( range_predicate1_item OR range_predicate1_list ) ;
range_predicate1_item:
table1 . int_indexed not BETWEEN _tinyint_unsigned[invariant] AND ( _tinyint_unsigned[invariant] + _tinyint_unsigned ) |
table1 . `col_varchar_key` arithmetic_operator _char[invariant] |
table1 . int_indexed not IN (number_list) |
table1 . `col_varchar_key` not IN (char_list) |
table1 . `pk` > _tinyint_unsigned[invariant] AND table1 . `pk` < ( _tinyint_unsigned[invariant] + _tinyint_unsigned ) |
table1 . `col_int_key` > _tinyint_unsigned[invariant] AND table1 . `col_int_key` < ( _tinyint_unsigned[invariant] + _tinyint_unsigned ) ;
################################################################################
# The range_predicate_2* rules below are in place to ensure we hit the #
# index_merge/union optimization. #
# NOTE: combinations of the predicate_1 and predicate_2 rules tend to hit the #
# index_merge/intersect optimization #
################################################################################
range_predicate2_list:
range_predicate2_item |
( range_predicate2_item and_or range_predicate2_list ) ;
range_predicate2_item:
table1 . `pk` = _tinyint_unsigned |
table1 . `col_int_key` = _tinyint_unsigned |
table1 . `col_varchar_key` = _char |
table1 . int_indexed = _tinyint_unsigned |
table1 . `col_varchar_key` = _char |
table1 . int_indexed = existing_table_item . int_indexed |
table1 . `col_varchar_key` = existing_table_item . `col_varchar_key` ;
################################################################################
# The number and char_list rules are for creating WHERE conditions that test #
# 'field' IN (list_of_items) #
################################################################################
number_list:
_tinyint_unsigned | number_list, _tinyint_unsigned ;
char_list:
_char | char_list, _char ;
################################################################################
# We ensure that a GROUP BY statement includes all nonaggregates. #
# This helps to ensure the query is more useful in detecting real errors / #
# that the query doesn't lend itself to variable result sets #
################################################################################
group_by_clause:
{ scalar(@nonaggregates) > 0 ? " GROUP BY ".join (', ' , @nonaggregates ) : "" } ;
optional_group_by:
| | group_by_clause ;
having_clause:
| HAVING having_list;
having_list:
having_item |
having_item |
(having_list and_or having_item) ;
having_item:
existing_select_item arithmetic_operator value ;
################################################################################
# We use the total_order_by rule when using the LIMIT operator to ensure that #
# we have a consistent result set - server1 and server2 should not differ #
################################################################################
order_by_clause:
|
ORDER BY total_order_by , table1 . _field_indexed desc limit |
ORDER BY order_by_list |
ORDER BY total_order_by, order_by_list limit ;
total_order_by:
{ join(', ', map { "field".$_ } (1..$fields) ) };
order_by_list:
order_by_item |
order_by_item , order_by_list ;
order_by_item:
table1 . _field_indexed , existing_table_item .`pk` desc |
table1 . _field_indexed desc |
existing_select_item desc ;
desc:
ASC | | DESC ;
################################################################################
# We mix digit and _digit here. We want to alter the possible values of LIMIT #
# To ensure we hit varying EXPLAIN plans, but the OFFSET can be smaller #
################################################################################
limit:
| | LIMIT limit_size | LIMIT limit_size OFFSET _digit;
new_select_item:
nonaggregate_select_item |
nonaggregate_select_item |
nonaggregate_select_item |
nonaggregate_select_item |
nonaggregate_select_item |
nonaggregate_select_item |
nonaggregate_select_item |
nonaggregate_select_item |
aggregate_select_item |
combo_select_item ;
################################################################################
# We have the perl code here to help us write more sensible queries #
# It allows us to use field1...fieldn in the WHERE, ORDER BY, and GROUP BY #
# clauses so that the queries will produce more stable and interesting results #
################################################################################
nonaggregate_select_item:
table_one_two . _field_indexed AS { my $f = "field".++$fields ; push @nonaggregates , $f ; $f } |
table_one_two . _field_indexed AS { my $f = "field".++$fields ; push @nonaggregates , $f ; $f } |
table_one_two . _field AS { my $f = "field".++$fields ; push @nonaggregates , $f ; $f } ;
aggregate_select_item:
aggregate table_one_two . _field ) AS { "field".++$fields };
################################################################################
# The combo_select_items are for 'spice' - we actually found #
################################################################################
combo_select_item:
( ( table_one_two . int_field_name ) math_operator ( table_one_two . int_field_name ) ) AS { my $f = "field".++$fields ; push @nonaggregates , $f ; $f } |
CONCAT ( table_one_two . char_field_name , table_one_two . char_field_name ) AS { my $f = "field".++$fields ; push @nonaggregates , $f ; $f } ;
table_one_two:
table1 | table2 ;
aggregate:
COUNT( distinct | SUM( distinct | MIN( distinct | MAX( distinct ;
################################################################################
# The following rules are for writing more sensible queries - that we don't #
# reference tables / fields that aren't present in the query and that we keep #
# track of what we have added. You shouldn't need to touch these ever #
################################################################################
new_table_item:
_table AS { "table".++$tables };
current_table_item:
{ "table".$tables };
previous_table_item:
{ "table".($tables - 1) };
existing_table_item:
{ "table".$prng->int(1,$tables) };
existing_select_item:
{ "field".$prng->int(1,$fields) };
################################################################################
# end of utility rules #
################################################################################
arithmetic_operator:
= | > | < | != | <> | <= | >= ;
################################################################################
# We are trying to skew the ON condition for JOINs to be largely based on #
# equalities, but to still allow other arithmetic operators #
################################################################################
join_condition_operator:
arithmetic_operator | = | = | = ;
################################################################################
# Used for creating combo_items - ie (field1 + field2) AS fieldX #
# We ignore division to prevent division by zero errors #
################################################################################
math_operator:
+ | - | * ;
################################################################################
# We stack AND to provide more interesting options for the optimizer #
# Alter these percentages at your own risk / look for coverage regressions #
# with --debug if you play with these. Those optimizations that require an #
# OR-only list in the WHERE clause are specifically stacked in another rule #
################################################################################
and_or:
AND | AND | OR ;
value:
_digit | _digit | _digit | _digit | _tinyint_unsigned|
_char(2) | _char(2) | _char(2) | _char(2) | _char(2) ;
_table:
A | B | C | BB | CC | B | C | BB | CC |
C | C | C | C | C | C | C | C | C |
CC | CC | CC | CC | CC | CC | CC | CC |
D ;
################################################################################
# Add a possibility for 'view' to occur at the end of the previous '_table' rule
# to allow a chance to use views (when running the RQG with --views)
################################################################################
view:
_A | _B | _C | _BB | _CC ;
_field:
int_field_name | char_field_name ;
_digit:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | _tinyint_unsigned ;
int_field_name:
`pk` | `col_int_key` | `col_int_nokey` ;
int_indexed:
`pk` | `col_int_key` ;
char_field_name:
`col_varchar_key` | `col_varchar_nokey` ;
################################################################################
# We define LIMIT_rows in this fashion as LIMIT values can differ depending on #
# how large the LIMIT is - LIMIT 2 = LIMIT 9 != LIMIT 19 #
################################################################################
limit_size:
1 | 2 | 10 | 100 | 1000;