polardbxengine/unittest/gunit/mysys_my_rdtsc-t.cc

237 lines
7.6 KiB
C++

/* Copyright (c) 2009, 2018, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/*
rdtsc3 -- multi-platform timer code
When you run rdtsc3, it will print the contents of
"my_timer_info". The display indicates
what timer routine is best for a given platform.
For example, this is the display on production.mysql.com,
a 2.8GHz Xeon with Linux 2.6.17, gcc 3.3.3:
cycles nanoseconds microseconds milliseconds ticks
------------- ------------- ------------- ------------- -------------
1 11 13 18 17
2815019607 1000000000 1000000 1049 102
1 1000 1 1 1
88 4116 3888 4092 2044
The first line shows routines, e.g. 1 = MY_TIMER_ROUTINE_ASM_X86.
The second line shows frequencies, e.g. 2815019607 is nearly 2.8GHz.
The third line shows resolutions, e.g. 1000 = very poor resolution.
The fourth line shows overheads, e.g. ticks takes 2044 cycles.
*/
#include <gtest/gtest.h>
#include "my_inttypes.h"
#include "my_rdtsc.h"
namespace mysys_my_rdtsc_unittest {
const int LOOP_COUNT = 100;
class RDTimeStampCounter : public ::testing::Test {
protected:
void SetUp() { test_init(); }
void test_init();
MY_TIMER_INFO myt;
};
void RDTimeStampCounter::test_init() {
my_timer_init(&myt);
fprintf(stdout, "----- Routine ---------------\n");
fprintf(stdout, "myt.cycles.routine : %13llu\n", myt.cycles.routine);
fprintf(stdout, "myt.nanoseconds.routine : %13llu\n",
myt.nanoseconds.routine);
fprintf(stdout, "myt.microseconds.routine : %13llu\n",
myt.microseconds.routine);
fprintf(stdout, "myt.milliseconds.routine : %13llu\n",
myt.milliseconds.routine);
fprintf(stdout, "myt.ticks.routine : %13llu\n", myt.ticks.routine);
fprintf(stdout, "----- Frequency -------------\n");
fprintf(stdout, "myt.cycles.frequency : %13llu\n",
myt.cycles.frequency);
fprintf(stdout, "myt.nanoseconds.frequency : %13llu\n",
myt.nanoseconds.frequency);
fprintf(stdout, "myt.microseconds.frequency : %13llu\n",
myt.microseconds.frequency);
fprintf(stdout, "myt.milliseconds.frequency : %13llu\n",
myt.milliseconds.frequency);
fprintf(stdout, "myt.ticks.frequency : %13llu\n",
myt.ticks.frequency);
fprintf(stdout, "----- Resolution ------------\n");
fprintf(stdout, "myt.cycles.resolution : %13llu\n",
myt.cycles.resolution);
fprintf(stdout, "myt.nanoseconds.resolution : %13llu\n",
myt.nanoseconds.resolution);
fprintf(stdout, "myt.microseconds.resolution : %13llu\n",
myt.microseconds.resolution);
fprintf(stdout, "myt.milliseconds.resolution : %13llu\n",
myt.milliseconds.resolution);
fprintf(stdout, "myt.ticks.resolution : %13llu\n",
myt.ticks.resolution);
fprintf(stdout, "----- Overhead --------------\n");
fprintf(stdout, "myt.cycles.overhead : %13llu\n",
myt.cycles.overhead);
fprintf(stdout, "myt.nanoseconds.overhead : %13llu\n",
myt.nanoseconds.overhead);
fprintf(stdout, "myt.microseconds.overhead : %13llu\n",
myt.microseconds.overhead);
fprintf(stdout, "myt.milliseconds.overhead : %13llu\n",
myt.milliseconds.overhead);
fprintf(stdout, "myt.ticks.overhead : %13llu\n", myt.ticks.overhead);
}
TEST_F(RDTimeStampCounter, TestCycle) {
ulonglong t1 = my_timer_cycles();
ulonglong t2;
int i;
int backward = 0;
int nonzero = 0;
for (i = 0; i < LOOP_COUNT; i++) {
t2 = my_timer_cycles();
if (t1 >= t2) backward++;
if (t2 != 0) nonzero++;
t1 = t2;
}
#if defined(__aarch64__)
/*
The ARM cycle timer can have low resolution, so backward can be
0 or >0 depending on machine.
*/
EXPECT_EQ(LOOP_COUNT, nonzero);
#else
/* Expect at most 1 backward, the cycle value can overflow */
EXPECT_TRUE((backward <= 1)) << "The cycle timer is strictly increasing";
#endif
if (myt.cycles.routine != 0)
EXPECT_TRUE((nonzero != 0)) << "The cycle timer is implemented";
else
EXPECT_TRUE((nonzero == 0))
<< "The cycle timer is not implemented and returns 0";
}
TEST_F(RDTimeStampCounter, TestNanosecond) {
ulonglong t1 = my_timer_nanoseconds();
ulonglong t2;
int i;
int backward = 0;
int nonzero = 0;
for (i = 0; i < LOOP_COUNT; i++) {
t2 = my_timer_nanoseconds();
if (t1 > t2) backward++;
if (t2 != 0) nonzero++;
t1 = t2;
}
EXPECT_TRUE((backward == 0)) << "The nanosecond timer is increasing";
if (myt.nanoseconds.routine != 0)
EXPECT_TRUE((nonzero != 0)) << "The nanosecond timer is implemented";
else
EXPECT_TRUE((nonzero == 0))
<< "The nanosecond timer is not implemented and returns 0";
}
TEST_F(RDTimeStampCounter, TestMicrosecond) {
ulonglong t1 = my_timer_microseconds();
ulonglong t2;
int i;
int backward = 0;
int nonzero = 0;
for (i = 0; i < LOOP_COUNT; i++) {
t2 = my_timer_microseconds();
if (t1 > t2) backward++;
if (t2 != 0) nonzero++;
t1 = t2;
}
EXPECT_TRUE((backward == 0)) << "The microsecond timer is increasing";
if (myt.microseconds.routine != 0)
EXPECT_TRUE((nonzero != 0)) << "The microsecond timer is implemented";
else
EXPECT_TRUE((nonzero == 0))
<< "The microsecond timer is not implemented and returns 0";
}
TEST_F(RDTimeStampCounter, TestMillisecond) {
ulonglong t1 = my_timer_milliseconds();
ulonglong t2;
int i;
int backward = 0;
int nonzero = 0;
for (i = 0; i < LOOP_COUNT; i++) {
t2 = my_timer_milliseconds();
if (t1 > t2) backward++;
if (t2 != 0) nonzero++;
t1 = t2;
}
EXPECT_TRUE((backward == 0)) << "The millisecond timer is increasing";
if (myt.milliseconds.routine != 0)
EXPECT_TRUE((nonzero != 0)) << "The millisecond timer is implemented";
else
EXPECT_TRUE((nonzero == 0))
<< "The millisecond timer is not implemented and returns 0";
}
TEST_F(RDTimeStampCounter, TestTick) {
ulonglong t1 = my_timer_ticks();
ulonglong t2;
int i;
int backward = 0;
int nonzero = 0;
for (i = 0; i < LOOP_COUNT; i++) {
t2 = my_timer_ticks();
if (t1 > t2) backward++;
if (t2 != 0) nonzero++;
t1 = t2;
}
EXPECT_TRUE((backward == 0)) << "The tick timer is increasing";
if (myt.ticks.routine != 0)
EXPECT_TRUE((nonzero != 0)) << "The tick timer is implemented";
else
EXPECT_TRUE((nonzero == 0))
<< "The tick timer is not implemented and returns 0";
}
} // namespace mysys_my_rdtsc_unittest