polardbxengine/storage/innobase/ut/ut0rnd.cc

95 lines
2.5 KiB
C++

/*****************************************************************************
Copyright (c) 1994, 2018, Oracle and/or its affiliates. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License, version 2.0, as published by the
Free Software Foundation.
This program is also distributed with certain software (including but not
limited to OpenSSL) that is licensed under separate terms, as designated in a
particular file or component or in included license documentation. The authors
of MySQL hereby grant you an additional permission to link the program and
your derivative works with the separately licensed software that they have
included with MySQL.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0,
for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*****************************************************************************/
/** @file ut/ut0rnd.cc
Random numbers and hashing
Created 5/11/1994 Heikki Tuuri
********************************************************************/
#include "ut0rnd.h"
/** These random numbers are used in ut_find_prime */
/*@{*/
#define UT_RANDOM_1 1.0412321
#define UT_RANDOM_2 1.1131347
#define UT_RANDOM_3 1.0132677
/*@}*/
thread_local ulint ut_rnd_ulint_counter = 0;
/** Looks for a prime number slightly greater than the given argument.
The prime is chosen so that it is not near any power of 2.
@return prime */
ulint ut_find_prime(ulint n) /*!< in: positive number > 100 */
{
ulint pow2;
ulint i;
n += 100;
pow2 = 1;
while (pow2 * 2 < n) {
pow2 = 2 * pow2;
}
if ((double)n < 1.05 * (double)pow2) {
n = (ulint)((double)n * UT_RANDOM_1);
}
pow2 = 2 * pow2;
if ((double)n > 0.95 * (double)pow2) {
n = (ulint)((double)n * UT_RANDOM_2);
}
if (n > pow2 - 20) {
n += 30;
}
/* Now we have n far enough from powers of 2. To make
n more random (especially, if it was not near
a power of 2), we then multiply it by a random number. */
n = (ulint)((double)n * UT_RANDOM_3);
for (;; n++) {
i = 2;
while (i * i <= n) {
if (n % i == 0) {
goto next_n;
}
i++;
}
/* Found a prime */
break;
next_n:;
}
return (n);
}