polardbxengine/storage/innobase/row/row0row.cc

1418 lines
49 KiB
C++

/*****************************************************************************
Copyright (c) 1996, 2019, Oracle and/or its affiliates. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License, version 2.0, as published by the
Free Software Foundation.
This program is also distributed with certain software (including but not
limited to OpenSSL) that is licensed under separate terms, as designated in a
particular file or component or in included license documentation. The authors
of MySQL hereby grant you an additional permission to link the program and
your derivative works with the separately licensed software that they have
included with MySQL.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0,
for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*****************************************************************************/
/** @file row/row0row.cc
General row routines
Created 4/20/1996 Heikki Tuuri
*******************************************************/
#include "row0row.h"
#include <sys/types.h>
#include "btr0btr.h"
#include "data0type.h"
#include "dict0boot.h"
#include "dict0dict.h"
#include "ha_prototypes.h"
#include "lob0lob.h"
#include "mach0data.h"
#include "que0que.h"
#include "read0read.h"
#include "rem0cmp.h"
#include "row0ext.h"
#include "row0mysql.h"
#include "row0upd.h"
#include "trx0purge.h"
#include "trx0rec.h"
#include "trx0roll.h"
#include "trx0rseg.h"
#include "trx0trx.h"
#include "trx0undo.h"
#include "ut0mem.h"
/** When an insert or purge to a table is performed, this function builds
the entry to be inserted into or purged from an index on the table.
@return index entry which should be inserted or purged
@retval NULL if the externally stored columns in the clustered index record
are unavailable and ext != NULL, or row is missing some needed columns. */
dtuple_t *row_build_index_entry_low(
const dtuple_t *row, /*!< in: row which should be
inserted or purged */
const row_ext_t *ext, /*!< in: externally stored column
prefixes, or NULL */
const dict_index_t *index, /*!< in: index on the table */
mem_heap_t *heap, /*!< in: memory heap from which
the memory for the index entry
is allocated */
ulint flag) /*!< in: ROW_BUILD_NORMAL,
ROW_BUILD_FOR_PURGE
or ROW_BUILD_FOR_UNDO */
{
dtuple_t *entry;
ulint entry_len;
ulint i;
ulint num_v = 0;
entry_len = dict_index_get_n_fields(index);
if (flag == ROW_BUILD_FOR_INSERT && index->is_clustered()) {
num_v = dict_table_get_n_v_cols(index->table);
entry = dtuple_create_with_vcol(heap, entry_len, num_v);
} else {
entry = dtuple_create(heap, entry_len);
}
if (index->is_corrupted() && dict_index_has_virtual(index) &&
dict_index_get_online_status(index) == ONLINE_INDEX_ABORTED_DROPPED) {
/* See comments for virtual index in row_merge_drop_indexes().
In this case, just return the empty entry object */
return (entry);
}
if (dict_index_is_ibuf(index)) {
dtuple_set_n_fields_cmp(entry, entry_len);
/* There may only be externally stored columns
in a clustered index B-tree of a user table. */
ut_a(!ext);
} else {
dtuple_set_n_fields_cmp(entry, dict_index_get_n_unique_in_tree(index));
}
for (i = 0; i < entry_len + num_v; i++) {
const dict_field_t *ind_field = NULL;
const dict_col_t *col;
ulint col_no = 0;
dfield_t *dfield;
dfield_t *dfield2;
ulint len;
if (i >= entry_len) {
/* This is to insert new rows to cluster index */
ut_ad(index->is_clustered() && flag == ROW_BUILD_FOR_INSERT);
dfield = dtuple_get_nth_v_field(entry, i - entry_len);
col = &dict_table_get_nth_v_col(index->table, i - entry_len)->m_col;
} else {
ind_field = index->get_field(i);
col = ind_field->col;
col_no = dict_col_get_no(col);
dfield = dtuple_get_nth_field(entry, i);
}
#if DATA_MISSING != 0
#error "DATA_MISSING != 0"
#endif
if (col->is_virtual()) {
const dict_v_col_t *v_col = reinterpret_cast<const dict_v_col_t *>(col);
ut_ad(v_col->v_pos < dtuple_get_n_v_fields(row));
dfield2 = dtuple_get_nth_v_field(row, v_col->v_pos);
ut_ad(dfield_is_null(dfield2) || dfield2->len == UNIV_NO_INDEX_VALUE ||
dfield2->data);
} else {
dfield2 = dtuple_get_nth_field(row, col_no);
ut_ad(dfield_get_type(dfield2)->mtype == DATA_MISSING ||
(!(dfield_get_type(dfield2)->prtype & DATA_VIRTUAL)));
}
if (UNIV_UNLIKELY(dfield_get_type(dfield2)->mtype == DATA_MISSING)) {
/* The field has not been initialized in the row.
This should be from trx_undo_rec_get_partial_row(). */
return (NULL);
}
#ifdef UNIV_DEBUG
if (dfield_get_type(dfield2)->prtype & DATA_VIRTUAL &&
index->is_clustered()) {
ut_ad(flag == ROW_BUILD_FOR_INSERT);
}
#endif /* UNIV_DEBUG */
/* Special handle spatial index, set the first field
which is for store MBR. */
if (dict_index_is_spatial(index) && i == 0) {
double *mbr;
dfield_copy(dfield, dfield2);
dfield->type.prtype |= DATA_GIS_MBR;
/* Allocate memory for mbr field */
ulint mbr_len = DATA_MBR_LEN;
mbr = static_cast<double *>(mem_heap_alloc(heap, mbr_len));
/* Set mbr field data. */
dfield_set_data(dfield, mbr, mbr_len);
if (dfield2->data) {
uchar *dptr = NULL;
ulint dlen = 0;
ulint flen = 0;
double tmp_mbr[SPDIMS * 2];
mem_heap_t *temp_heap = NULL;
if (dfield_is_ext(dfield2)) {
if (flag == ROW_BUILD_FOR_PURGE) {
byte *ptr = NULL;
spatial_status_t spatial_status;
spatial_status = dfield_get_spatial_status(dfield2);
switch (spatial_status) {
case SPATIAL_ONLY:
ptr = static_cast<byte *>(dfield_get_data(dfield2));
ut_ad(dfield_get_len(dfield2) == DATA_MBR_LEN);
break;
case SPATIAL_MIXED:
ptr = static_cast<byte *>(dfield_get_data(dfield2)) +
dfield_get_len(dfield2);
break;
case SPATIAL_NONE:
/* Undo record is logged before
spatial index is created.*/
return (NULL);
case SPATIAL_UNKNOWN:
ut_ad(0);
}
memcpy(mbr, ptr, DATA_MBR_LEN);
continue;
}
if (flag == ROW_BUILD_FOR_UNDO &&
dict_table_has_atomic_blobs(index->table)) {
/* For build entry for undo, and
the table is Barrcuda, we need
to skip the prefix data. */
flen = BTR_EXTERN_FIELD_REF_SIZE;
ut_ad(dfield_get_len(dfield2) >= BTR_EXTERN_FIELD_REF_SIZE);
dptr = static_cast<byte *>(dfield_get_data(dfield2)) +
dfield_get_len(dfield2) - BTR_EXTERN_FIELD_REF_SIZE;
} else {
flen = dfield_get_len(dfield2);
dptr = static_cast<byte *>(dfield_get_data(dfield2));
}
temp_heap = mem_heap_create(1000);
const page_size_t page_size =
(ext != NULL) ? ext->page_size
: dict_table_page_size(index->table);
const dict_index_t *clust_index =
(ext == nullptr ? index->table->first_index() : ext->index);
dptr = lob::btr_copy_externally_stored_field(
nullptr, clust_index, &dlen, nullptr, dptr, page_size, flen,
false, temp_heap);
} else {
dptr = static_cast<uchar *>(dfield_get_data(dfield2));
dlen = dfield_get_len(dfield2);
}
if (dlen <= GEO_DATA_HEADER_SIZE) {
for (uint i = 0; i < SPDIMS; ++i) {
tmp_mbr[i * 2] = DBL_MAX;
tmp_mbr[i * 2 + 1] = -DBL_MAX;
}
} else {
get_mbr_from_store(index->rtr_srs.get(), dptr,
static_cast<uint>(dlen), SPDIMS, tmp_mbr, nullptr);
}
dfield_write_mbr(dfield, tmp_mbr);
if (temp_heap) {
mem_heap_free(temp_heap);
}
}
continue;
}
len = dfield_get_len(dfield2);
dfield_copy(dfield, dfield2);
if (dfield_is_null(dfield)) {
continue;
}
if ((!ind_field || ind_field->prefix_len == 0) &&
(!dfield_is_ext(dfield) || index->is_clustered())) {
/* The dfield_copy() above suffices for
columns that are stored in-page, or for
clustered index record columns that are not
part of a column prefix in the PRIMARY KEY,
or for virtaul columns in cluster index record. */
continue;
}
/* If the column is stored externally (off-page) in
the clustered index, it must be an ordering field in
the secondary index. If !atomic_blobs, the only way
we may have a secondary index pointing to a clustered
index record with an off-page column is when it is a
column prefix index. If atomic_blobs, also fully
indexed long columns may be stored off-page. */
ut_ad(col->ord_part);
if (ext && !col->is_virtual()) {
/* See if the column is stored externally. */
const byte *buf = row_ext_lookup(ext, col_no, &len);
if (UNIV_LIKELY_NULL(buf)) {
if (UNIV_UNLIKELY(buf == field_ref_zero)) {
return (NULL);
}
dfield_set_data(dfield, buf, len);
}
if (ind_field->prefix_len == 0) {
/* If ROW_FORMAT=DYNAMIC or
ROW_FORMAT=COMPRESSED, we can have a
secondary index on an entire column
that is stored off-page in the
clustered index. As this is not a
prefix index (prefix_len == 0),
include the entire off-page column in
the secondary index record. */
continue;
}
} else if (dfield_is_ext(dfield)) {
/* This table is either in
(ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT)
or a purge record where the ordered part of
the field is not external.
In ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT,
the maximum column prefix
index length is 767 bytes, and the clustered
index record contains a 768-byte prefix of
each off-page column. */
ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE);
len -= BTR_EXTERN_FIELD_REF_SIZE;
dfield_set_len(dfield, len);
}
/* If a column prefix index, take only the prefix. */
if (ind_field->prefix_len) {
len = dtype_get_at_most_n_mbchars(
col->prtype, col->mbminmaxlen, ind_field->prefix_len, len,
static_cast<char *>(dfield_get_data(dfield)));
dfield_set_len(dfield, len);
}
}
return (entry);
}
/** An inverse function to row_build_index_entry. Builds a row from a
record in a clustered index, with possible indexing on ongoing
addition of new virtual columns.
@param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA;
@param[in] index clustered index
@param[in] rec record in the clustered index
@param[in] offsets rec_get_offsets(rec,index) or NULL
@param[in] col_table table, to check which
externally stored columns
occur in the ordering columns
of an index, or NULL if
index->table should be
consulted instead
@param[in] add_cols default values of added columns, or NULL
@param[in] add_v new virtual columns added
along with new indexes
@param[in] col_map mapping of old column
numbers to new ones, or NULL
@param[in] ext cache of externally stored column
prefixes, or NULL
@param[in] heap memory heap from which
the memory needed is allocated
@return own: row built; */
static inline dtuple_t *row_build_low(ulint type, const dict_index_t *index,
const rec_t *rec, const ulint *offsets,
const dict_table_t *col_table,
const dtuple_t *add_cols,
const dict_add_v_col_t *add_v,
const ulint *col_map, row_ext_t **ext,
mem_heap_t *heap) {
const byte *copy;
dtuple_t *row;
ulint n_ext_cols;
ulint *ext_cols = NULL; /* remove warning */
ulint len;
byte *buf;
ulint j;
mem_heap_t *tmp_heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
rec_offs_init(offsets_);
ut_ad(index != NULL);
ut_ad(rec != NULL);
ut_ad(heap != NULL);
ut_ad(index->is_clustered());
ut_ad(!trx_sys_mutex_own());
ut_ad(!col_map || col_table);
if (!offsets) {
offsets = rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &tmp_heap);
} else {
ut_ad(rec_offs_validate(rec, index, offsets));
}
#if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG
/* Some blob refs can be NULL during crash recovery before
trx_rollback_active() has completed execution, or when a concurrently
executing insert or update has committed the B-tree mini-transaction
but has not yet managed to restore the cursor position for writing
the big_rec. Note that the mini-transaction can be committed multiple
times, and the cursor restore can happen multiple times for single
insert or update statement. */
ut_a(!rec_offs_any_null_extern(rec, offsets) ||
trx_rw_is_active(row_get_rec_trx_id(rec, index, offsets), NULL, false));
#endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */
if (type != ROW_COPY_POINTERS) {
/* Take a copy of rec to heap */
buf = static_cast<byte *>(mem_heap_alloc(heap, rec_offs_size(offsets)));
copy = rec_copy(buf, rec, offsets);
} else {
copy = rec;
}
n_ext_cols = rec_offs_n_extern(offsets);
if (n_ext_cols) {
ext_cols = static_cast<ulint *>(
mem_heap_alloc(heap, n_ext_cols * sizeof *ext_cols));
}
/* Avoid a debug assertion in rec_offs_validate(). */
rec_offs_make_valid(copy, index, const_cast<ulint *>(offsets));
if (!col_table) {
ut_ad(!col_map);
ut_ad(!add_cols);
col_table = index->table;
}
if (add_cols) {
ut_ad(col_map);
row = dtuple_copy(add_cols, heap);
/* dict_table_copy_types() would set the fields to NULL */
for (ulint i = 0; i < col_table->get_n_cols(); i++) {
col_table->get_col(i)->copy_type(
dfield_get_type(dtuple_get_nth_field(row, i)));
}
} else if (add_v != NULL) {
row = dtuple_create_with_vcol(
heap, col_table->get_n_cols(),
dict_table_get_n_v_cols(col_table) + add_v->n_v_col);
dict_table_copy_types(row, col_table);
for (ulint i = 0; i < add_v->n_v_col; i++) {
add_v->v_col[i].m_col.copy_type(
dfield_get_type(dtuple_get_nth_v_field(row, i + col_table->n_v_def)));
}
} else {
row = dtuple_create_with_vcol(heap, col_table->get_n_cols(),
dict_table_get_n_v_cols(col_table));
dict_table_copy_types(row, col_table);
}
dtuple_set_info_bits(row, rec_get_info_bits(copy, rec_offs_comp(offsets)));
j = 0;
for (ulint i = 0; i < rec_offs_n_fields(offsets); i++) {
const dict_field_t *ind_field = index->get_field(i);
if (ind_field->prefix_len) {
/* Column prefixes can only occur in key
fields, which cannot be stored externally. For
a column prefix, there should also be the full
field in the clustered index tuple. The row
tuple comprises full fields, not prefixes. */
ut_ad(!rec_offs_nth_extern(offsets, i));
continue;
}
const dict_col_t *col = ind_field->col;
ulint col_no = dict_col_get_no(col);
if (col_map) {
col_no = col_map[col_no];
if (col_no == ULINT_UNDEFINED) {
/* dropped column */
continue;
}
}
dfield_t *dfield = dtuple_get_nth_field(row, col_no);
const byte *field;
field = rec_get_nth_field_instant(copy, offsets, i, index, &len);
dfield_set_data(dfield, field, len);
if (rec_offs_nth_extern(offsets, i)) {
dfield_set_ext(dfield);
col = col_table->get_col(col_no);
if (col->ord_part) {
/* We will have to fetch prefixes of
externally stored columns that are
referenced by column prefixes. */
ext_cols[j++] = col_no;
}
}
}
rec_offs_make_valid(rec, index, const_cast<ulint *>(offsets));
ut_ad(dtuple_check_typed(row));
if (!ext) {
/* REDUNDANT and COMPACT formats store a local
768-byte prefix of each externally stored
column. No cache is needed.
During online table rebuild,
row_log_table_apply_delete_low()
may use a cache that was set up by
row_log_table_delete(). */
} else if (j) {
*ext = row_ext_create(index, j, ext_cols, index->table->flags, row,
dict_index_is_sdi(index), heap);
} else {
*ext = NULL;
}
if (tmp_heap) {
mem_heap_free(tmp_heap);
}
return (row);
}
/** An inverse function to row_build_index_entry. Builds a row from a
record in a clustered index.
@return own: row built; see the NOTE below! */
dtuple_t *row_build(ulint type, /*!< in: ROW_COPY_POINTERS or
ROW_COPY_DATA; the latter
copies also the data fields to
heap while the first only
places pointers to data fields
on the index page, and thus is
more efficient */
const dict_index_t *index, /*!< in: clustered index */
const rec_t *rec, /*!< in: record in the clustered
index; NOTE: in the case
ROW_COPY_POINTERS the data
fields in the row will point
directly into this record,
therefore, the buffer page of
this record must be at least
s-latched and the latch held
as long as the row dtuple is used! */
const ulint *offsets, /*!< in: rec_get_offsets(rec,index)
or NULL, in which case this function
will invoke rec_get_offsets() */
const dict_table_t *col_table,
/*!< in: table, to check which
externally stored columns
occur in the ordering columns
of an index, or NULL if
index->table should be
consulted instead */
const dtuple_t *add_cols,
/*!< in: default values of
added columns, or NULL */
const ulint *col_map, /*!< in: mapping of old column
numbers to new ones, or NULL */
row_ext_t **ext, /*!< out, own: cache of
externally stored column
prefixes, or NULL */
mem_heap_t *heap) /*!< in: memory heap from which
the memory needed is allocated */
{
return (row_build_low(type, index, rec, offsets, col_table, add_cols, NULL,
col_map, ext, heap));
}
/** An inverse function to row_build_index_entry. Builds a row from a
record in a clustered index, with possible indexing on ongoing
addition of new virtual columns.
@param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA;
@param[in] index clustered index
@param[in] rec record in the clustered index
@param[in] offsets rec_get_offsets(rec,index) or NULL
@param[in] col_table table, to check which
externally stored columns
occur in the ordering columns
of an index, or NULL if
index->table should be
consulted instead
@param[in] add_cols default values of added columns, or NULL
@param[in] add_v new virtual columns added
along with new indexes
@param[in] col_map mapping of old column
numbers to new ones, or NULL
@param[in] ext cache of externally stored column
prefixes, or NULL
@param[in] heap memory heap from which
the memory needed is allocated
@return own: row built; */
dtuple_t *row_build_w_add_vcol(ulint type, const dict_index_t *index,
const rec_t *rec, const ulint *offsets,
const dict_table_t *col_table,
const dtuple_t *add_cols,
const dict_add_v_col_t *add_v,
const ulint *col_map, row_ext_t **ext,
mem_heap_t *heap) {
return (row_build_low(type, index, rec, offsets, col_table, add_cols, add_v,
col_map, ext, heap));
}
/** Converts an index record to a typed data tuple.
@return index entry built; does not set info_bits, and the data fields
in the entry will point directly to rec */
dtuple_t *row_rec_to_index_entry_low(
const rec_t *rec, /*!< in: record in the index */
const dict_index_t *index, /*!< in: index */
const ulint *offsets, /*!< in: rec_get_offsets(rec, index) */
ulint *n_ext, /*!< out: number of externally
stored columns */
mem_heap_t *heap) /*!< in: memory heap from which
the memory needed is allocated */
{
dtuple_t *entry;
dfield_t *dfield;
ulint i;
const byte *field;
ulint len;
ulint rec_len;
ut_ad(rec != NULL);
ut_ad(heap != NULL);
ut_ad(index != NULL);
/* Because this function may be invoked by row0merge.cc
on a record whose header is in different format, the check
rec_offs_validate(rec, index, offsets) must be avoided here. */
ut_ad(n_ext);
*n_ext = 0;
rec_len = rec_offs_n_fields(offsets);
entry = dtuple_create(heap, rec_len);
dtuple_set_n_fields_cmp(entry, dict_index_get_n_unique_in_tree(index));
ut_ad(rec_len == dict_index_get_n_fields(index)
/* a record for older SYS_INDEXES table
(missing merge_threshold column) is acceptable. */
|| (index->table->id == DICT_INDEXES_ID &&
rec_len == dict_index_get_n_fields(index) - 1));
dict_index_copy_types(entry, index, rec_len);
for (i = 0; i < rec_len; i++) {
dfield = dtuple_get_nth_field(entry, i);
field = rec_get_nth_field_instant(rec, offsets, i, index, &len);
dfield_set_data(dfield, field, len);
if (rec_offs_nth_extern(offsets, i)) {
dfield_set_ext(dfield);
(*n_ext)++;
}
}
ut_ad(dtuple_check_typed(entry));
return (entry);
}
/** Converts an index record to a typed data tuple. NOTE that externally
stored (often big) fields are NOT copied to heap.
@return own: index entry built */
dtuple_t *row_rec_to_index_entry(
const rec_t *rec, /*!< in: record in the index */
const dict_index_t *index, /*!< in: index */
const ulint *offsets, /*!< in: rec_get_offsets(rec) */
ulint *n_ext, /*!< out: number of externally
stored columns */
mem_heap_t *heap) /*!< in: memory heap from which
the memory needed is allocated */
{
dtuple_t *entry;
byte *buf;
const rec_t *copy_rec;
DBUG_TRACE;
ut_ad(rec != NULL);
ut_ad(heap != NULL);
ut_ad(index != NULL);
ut_ad(rec_offs_validate(rec, index, offsets));
/* Take a copy of rec to heap */
buf = static_cast<byte *>(mem_heap_alloc(heap, rec_offs_size(offsets)));
copy_rec = rec_copy(buf, rec, offsets);
rec_offs_make_valid(copy_rec, index, const_cast<ulint *>(offsets));
entry = row_rec_to_index_entry_low(copy_rec, index, offsets, n_ext, heap);
rec_offs_make_valid(rec, index, const_cast<ulint *>(offsets));
dtuple_set_info_bits(entry, rec_get_info_bits(rec, rec_offs_comp(offsets)));
return entry;
}
/** Builds from a secondary index record a row reference with which we can
search the clustered index record.
@return own: row reference built; see the NOTE below! */
dtuple_t *row_build_row_ref(
ulint type, /*!< in: ROW_COPY_DATA, or ROW_COPY_POINTERS:
the former copies also the data fields to
heap, whereas the latter only places pointers
to data fields on the index page */
const dict_index_t *index, /*!< in: secondary index */
const rec_t *rec, /*!< in: record in the index;
NOTE: in the case ROW_COPY_POINTERS
the data fields in the row will point
directly into this record, therefore,
the buffer page of this record must be
at least s-latched and the latch held
as long as the row reference is used! */
mem_heap_t *heap) /*!< in: memory heap from which the memory
needed is allocated */
{
dict_table_t *table;
dict_index_t *clust_index;
dfield_t *dfield;
dtuple_t *ref;
const byte *field;
ulint len;
ulint ref_len;
ulint pos;
byte *buf;
ulint clust_col_prefix_len;
ulint i;
mem_heap_t *tmp_heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint *offsets = offsets_;
rec_offs_init(offsets_);
ut_ad(index != NULL);
ut_ad(rec != NULL);
ut_ad(heap != NULL);
ut_ad(!index->is_clustered());
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &tmp_heap);
/* Secondary indexes must not contain externally stored columns. */
ut_ad(!rec_offs_any_extern(offsets));
if (type == ROW_COPY_DATA) {
/* Take a copy of rec to heap */
buf = static_cast<byte *>(mem_heap_alloc(heap, rec_offs_size(offsets)));
rec = rec_copy(buf, rec, offsets);
/* Avoid a debug assertion in rec_offs_validate(). */
rec_offs_make_valid(rec, index, offsets);
}
table = index->table;
clust_index = table->first_index();
ref_len = dict_index_get_n_unique(clust_index);
ref = dtuple_create(heap, ref_len);
dict_index_copy_types(ref, clust_index, ref_len);
for (i = 0; i < ref_len; i++) {
dfield = dtuple_get_nth_field(ref, i);
pos = dict_index_get_nth_field_pos(index, clust_index, i);
ut_a(pos != ULINT_UNDEFINED);
field = rec_get_nth_field(rec, offsets, pos, &len);
dfield_set_data(dfield, field, len);
/* If the primary key contains a column prefix, then the
secondary index may contain a longer prefix of the same
column, or the full column, and we must adjust the length
accordingly. */
clust_col_prefix_len = clust_index->get_field(i)->prefix_len;
if (clust_col_prefix_len > 0) {
if (len != UNIV_SQL_NULL) {
const dtype_t *dtype = dfield_get_type(dfield);
dfield_set_len(dfield, dtype_get_at_most_n_mbchars(
dtype->prtype, dtype->mbminmaxlen,
clust_col_prefix_len, len, (char *)field));
}
}
}
ut_ad(dtuple_check_typed(ref));
if (tmp_heap) {
mem_heap_free(tmp_heap);
}
return (ref);
}
/** Builds from a secondary index record a row reference with which we can
search the clustered index record. */
void row_build_row_ref_in_tuple(
dtuple_t *ref, /*!< in/out: row reference built;
see the NOTE below! */
const rec_t *rec, /*!< in: record in the index;
NOTE: the data fields in ref
will point directly into this
record, therefore, the buffer
page of this record must be at
least s-latched and the latch
held as long as the row
reference is used! */
const dict_index_t *index, /*!< in: secondary index */
ulint *offsets, /*!< in: rec_get_offsets(rec, index)
or NULL */
trx_t *trx) /*!< in: transaction */
{
const dict_index_t *clust_index;
dfield_t *dfield;
const byte *field;
ulint len;
ulint ref_len;
ulint pos;
ulint clust_col_prefix_len;
ulint i;
mem_heap_t *heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
rec_offs_init(offsets_);
ut_a(ref);
ut_a(index);
ut_a(rec);
ut_ad(!index->is_clustered());
ut_a(index->table);
clust_index = index->table->first_index();
ut_ad(clust_index);
if (!offsets) {
offsets = rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &heap);
} else {
ut_ad(rec_offs_validate(rec, index, offsets));
}
/* Secondary indexes must not contain externally stored columns. */
ut_ad(!rec_offs_any_extern(offsets));
ref_len = dict_index_get_n_unique(clust_index);
ut_ad(ref_len == dtuple_get_n_fields(ref));
dict_index_copy_types(ref, clust_index, ref_len);
for (i = 0; i < ref_len; i++) {
dfield = dtuple_get_nth_field(ref, i);
pos = dict_index_get_nth_field_pos(index, clust_index, i);
ut_a(pos != ULINT_UNDEFINED);
field = rec_get_nth_field(rec, offsets, pos, &len);
dfield_set_data(dfield, field, len);
/* If the primary key contains a column prefix, then the
secondary index may contain a longer prefix of the same
column, or the full column, and we must adjust the length
accordingly. */
clust_col_prefix_len = clust_index->get_field(i)->prefix_len;
if (clust_col_prefix_len > 0) {
if (len != UNIV_SQL_NULL) {
const dtype_t *dtype = dfield_get_type(dfield);
dfield_set_len(dfield, dtype_get_at_most_n_mbchars(
dtype->prtype, dtype->mbminmaxlen,
clust_col_prefix_len, len, (char *)field));
}
}
}
ut_ad(dtuple_check_typed(ref));
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
}
/** Searches the clustered index record for a row, if we have the row reference.
@return true if found */
ibool row_search_on_row_ref(btr_pcur_t *pcur, /*!< out: persistent cursor, which
must be closed by the caller */
ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */
dict_table_t *table, /*!< in: table */
const dtuple_t *ref, /*!< in: row reference */
mtr_t *mtr) /*!< in/out: mtr */
{
ulint low_match;
rec_t *rec;
dict_index_t *index;
ut_ad(dtuple_check_typed(ref));
index = table->first_index();
ut_a(dtuple_get_n_fields(ref) == dict_index_get_n_unique(index));
btr_pcur_open(index, ref, PAGE_CUR_LE, mode, pcur, mtr);
low_match = btr_pcur_get_low_match(pcur);
rec = btr_pcur_get_rec(pcur);
if (page_rec_is_infimum(rec)) {
return (FALSE);
}
if (low_match != dtuple_get_n_fields(ref)) {
return (FALSE);
}
return (TRUE);
}
/** Fetches the clustered index record for a secondary index record. The latches
on the secondary index record are preserved.
@return record or NULL, if no record found */
rec_t *row_get_clust_rec(
ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */
const rec_t *rec, /*!< in: record in a secondary index */
const dict_index_t *index, /*!< in: secondary index */
dict_index_t **clust_index, /*!< out: clustered index */
mtr_t *mtr) /*!< in: mtr */
{
mem_heap_t *heap;
dtuple_t *ref;
dict_table_t *table;
btr_pcur_t pcur;
ibool found;
rec_t *clust_rec;
ut_ad(!index->is_clustered());
table = index->table;
heap = mem_heap_create(256);
ref = row_build_row_ref(ROW_COPY_POINTERS, index, rec, heap);
found = row_search_on_row_ref(&pcur, mode, table, ref, mtr);
clust_rec = found ? btr_pcur_get_rec(&pcur) : NULL;
mem_heap_free(heap);
btr_pcur_close(&pcur);
*clust_index = table->first_index();
return (clust_rec);
}
/** Parse the integer data from specified field, which could be
DATA_INT, DATA_FLOAT or DATA_DOUBLE. We could return 0 if
1) the value is less than 0 and the type is not unsigned
or 2) the field is null.
@param[in] field field to read the int value
@return the integer value read from the field, 0 for negative signed
int or NULL field */
ib_uint64_t row_parse_int_from_field(const dfield_t *field) {
const dtype_t *dtype = dfield_get_type(field);
ulint len = dfield_get_len(field);
const byte *data = static_cast<const byte *>(dfield_get_data(field));
ulint mtype = dtype_get_mtype(dtype);
bool unsigned_type = dtype->prtype & DATA_UNSIGNED;
if (dfield_is_null(field)) {
return (0);
} else {
return (row_parse_int(data, len, mtype, unsigned_type));
}
}
/** Read the autoinc counter from the clustered index row.
@param[in] row row to read the autoinc counter
@param[in] n autoinc counter is in the nth field
@return the autoinc counter read */
ib_uint64_t row_get_autoinc_counter(const dtuple_t *row, ulint n) {
const dfield_t *field = dtuple_get_nth_field(row, n);
return (row_parse_int_from_field(field));
}
/** Searches an index record.
@return whether the record was found or buffered */
enum row_search_result row_search_index_entry(
dict_index_t *index, /*!< in: index */
const dtuple_t *entry, /*!< in: index entry */
ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */
btr_pcur_t *pcur, /*!< in/out: persistent cursor, which must
be closed by the caller */
mtr_t *mtr) /*!< in: mtr */
{
ulint n_fields;
ulint low_match;
rec_t *rec;
ut_ad(dtuple_check_typed(entry));
if (dict_index_is_spatial(index)) {
ut_ad(mode & BTR_MODIFY_LEAF || mode & BTR_MODIFY_TREE);
rtr_pcur_open(index, entry, PAGE_CUR_RTREE_LOCATE, mode, pcur, mtr);
} else {
btr_pcur_open(index, entry, PAGE_CUR_LE, mode, pcur, mtr);
}
switch (btr_pcur_get_btr_cur(pcur)->flag) {
case BTR_CUR_UNSET:
ut_ad(0);
break;
case BTR_CUR_DELETE_REF:
ut_a(mode & BTR_DELETE && !dict_index_is_spatial(index));
return (ROW_NOT_DELETED_REF);
case BTR_CUR_DEL_MARK_IBUF:
case BTR_CUR_DELETE_IBUF:
case BTR_CUR_INSERT_TO_IBUF:
return (ROW_BUFFERED);
case BTR_CUR_HASH:
case BTR_CUR_HASH_FAIL:
case BTR_CUR_BINARY:
break;
}
low_match = btr_pcur_get_low_match(pcur);
rec = btr_pcur_get_rec(pcur);
n_fields = dtuple_get_n_fields(entry);
if (page_rec_is_infimum(rec)) {
return (ROW_NOT_FOUND);
} else if (low_match != n_fields) {
return (ROW_NOT_FOUND);
}
return (ROW_FOUND);
}
/** Formats the raw data in "data" (in InnoDB on-disk format) that is of
type DATA_INT using "prtype" and writes the result to "buf".
If the data is in unknown format, then nothing is written to "buf",
0 is returned and "format_in_hex" is set to TRUE, otherwise
"format_in_hex" is left untouched.
Not more than "buf_size" bytes are written to "buf".
The result is always '\0'-terminated (provided buf_size > 0) and the
number of bytes that were written to "buf" is returned (including the
terminating '\0').
@return number of bytes that were written */
static ulint row_raw_format_int(const char *data, /*!< in: raw data */
ulint data_len, /*!< in: raw data length
in bytes */
ulint prtype, /*!< in: precise type */
char *buf, /*!< out: output buffer */
ulint buf_size, /*!< in: output buffer size
in bytes */
ibool *format_in_hex) /*!< out: should the data
be formated in hex */
{
ulint ret;
if (data_len <= sizeof(ib_uint64_t)) {
ib_uint64_t value;
ibool unsigned_type = prtype & DATA_UNSIGNED;
value = mach_read_int_type((const byte *)data, data_len, unsigned_type);
ret =
snprintf(buf, buf_size, unsigned_type ? UINT64PF : "%" PRId64, value) +
1;
} else {
*format_in_hex = TRUE;
ret = 0;
}
return (ut_min(ret, buf_size));
}
/** Formats the raw data in "data" (in InnoDB on-disk format) that is of
type DATA_(CHAR|VARCHAR|MYSQL|VARMYSQL) using "prtype" and writes the
result to "buf".
If the data is in binary format, then nothing is written to "buf",
0 is returned and "format_in_hex" is set to TRUE, otherwise
"format_in_hex" is left untouched.
Not more than "buf_size" bytes are written to "buf".
The result is always '\0'-terminated (provided buf_size > 0) and the
number of bytes that were written to "buf" is returned (including the
terminating '\0').
@return number of bytes that were written */
static ulint row_raw_format_str(const char *data, /*!< in: raw data */
ulint data_len, /*!< in: raw data length
in bytes */
ulint prtype, /*!< in: precise type */
char *buf, /*!< out: output buffer */
ulint buf_size, /*!< in: output buffer size
in bytes */
ibool *format_in_hex) /*!< out: should the data
be formated in hex */
{
ulint charset_coll;
if (buf_size == 0) {
return (0);
}
/* we assume system_charset_info is UTF-8 */
charset_coll = dtype_get_charset_coll(prtype);
if (UNIV_LIKELY(dtype_is_utf8(prtype))) {
return (ut_str_sql_format(data, data_len, buf, buf_size));
}
/* else */
if (charset_coll == DATA_MYSQL_BINARY_CHARSET_COLL) {
*format_in_hex = TRUE;
return (0);
}
/* else */
return (innobase_raw_format(data, data_len, charset_coll, buf, buf_size));
}
/** Formats the raw data in "data" (in InnoDB on-disk format) using
"dict_field" and writes the result to "buf".
Not more than "buf_size" bytes are written to "buf".
The result is always NUL-terminated (provided buf_size is positive) and the
number of bytes that were written to "buf" is returned (including the
terminating NUL).
@return number of bytes that were written */
ulint row_raw_format(const char *data, /*!< in: raw data */
ulint data_len, /*!< in: raw data length
in bytes */
const dict_field_t *dict_field, /*!< in: index field */
char *buf, /*!< out: output buffer */
ulint buf_size) /*!< in: output buffer size
in bytes */
{
ulint mtype;
ulint prtype;
ulint ret;
ibool format_in_hex;
if (buf_size == 0) {
return (0);
}
ut_ad(data_len != UNIV_SQL_ADD_COL_DEFAULT);
if (data_len == UNIV_SQL_NULL) {
ret = snprintf((char *)buf, buf_size, "NULL") + 1;
return (ut_min(ret, buf_size));
}
mtype = dict_field->col->mtype;
prtype = dict_field->col->prtype;
format_in_hex = FALSE;
switch (mtype) {
case DATA_INT:
ret = row_raw_format_int(data, data_len, prtype, buf, buf_size,
&format_in_hex);
if (format_in_hex) {
goto format_in_hex;
}
break;
case DATA_CHAR:
case DATA_VARCHAR:
case DATA_MYSQL:
case DATA_VARMYSQL:
ret = row_raw_format_str(data, data_len, prtype, buf, buf_size,
&format_in_hex);
if (format_in_hex) {
goto format_in_hex;
}
break;
/* XXX support more data types */
default:
format_in_hex:
if (UNIV_LIKELY(buf_size > 2)) {
memcpy(buf, "0x", 2);
buf += 2;
buf_size -= 2;
ret = 2 + ut_raw_to_hex(data, data_len, buf, buf_size);
} else {
buf[0] = '\0';
ret = 1;
}
}
return (ret);
}
dfield_t *Multi_value_entry_builder_normal::find_multi_value_field() {
uint16_t i = 0;
dfield_t *field = nullptr;
for (; i < m_row->n_v_fields; ++i) {
field = &m_row->v_fields[i];
if (!dfield_is_multi_value(field) ||
(m_mv_field_no = m_index->has_multi_value_col(
dict_table_get_nth_v_col(m_index->table, i))) == 0) {
continue;
}
break;
}
return (i == m_row->n_v_fields ? nullptr : field);
}
#ifdef UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT
#ifdef HAVE_UT_CHRONO_T
void test_row_raw_format_int() {
ulint ret;
char buf[128];
ibool format_in_hex;
ulint i;
#define CALL_AND_TEST(data, data_len, prtype, buf, buf_size, ret_expected, \
buf_expected, format_in_hex_expected) \
do { \
ibool ok = TRUE; \
ulint i; \
memset(buf, 'x', 10); \
buf[10] = '\0'; \
format_in_hex = FALSE; \
fprintf(stderr, "TESTING \"\\x"); \
for (i = 0; i < data_len; i++) { \
fprintf(stderr, "%02hhX", data[i]); \
} \
fprintf(stderr, "\", %lu, %lu, %lu\n", (ulint)data_len, (ulint)prtype, \
(ulint)buf_size); \
ret = row_raw_format_int(data, data_len, prtype, buf, buf_size, \
&format_in_hex); \
if (ret != ret_expected) { \
fprintf(stderr, "expected ret %lu, got %lu\n", (ulint)ret_expected, \
ret); \
ok = FALSE; \
} \
if (strcmp((char *)buf, buf_expected) != 0) { \
fprintf(stderr, "expected buf \"%s\", got \"%s\"\n", buf_expected, buf); \
ok = FALSE; \
} \
if (format_in_hex != format_in_hex_expected) { \
fprintf(stderr, "expected format_in_hex %d, got %d\n", \
(int)format_in_hex_expected, (int)format_in_hex); \
ok = FALSE; \
} \
if (ok) { \
fprintf(stderr, "OK: %lu, \"%s\" %d\n\n", (ulint)ret, buf, \
(int)format_in_hex); \
} else { \
return; \
} \
} while (0)
#if 1
/* min values for signed 1-8 byte integers */
CALL_AND_TEST("\x00", 1, 0, buf, sizeof(buf), 5, "-128", 0);
CALL_AND_TEST("\x00\x00", 2, 0, buf, sizeof(buf), 7, "-32768", 0);
CALL_AND_TEST("\x00\x00\x00", 3, 0, buf, sizeof(buf), 9, "-8388608", 0);
CALL_AND_TEST("\x00\x00\x00\x00", 4, 0, buf, sizeof(buf), 12, "-2147483648",
0);
CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, 0, buf, sizeof(buf), 14,
"-549755813888", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, 0, buf, sizeof(buf), 17,
"-140737488355328", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, 0, buf, sizeof(buf), 19,
"-36028797018963968", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, 0, buf, sizeof(buf), 21,
"-9223372036854775808", 0);
/* min values for unsigned 1-8 byte integers */
CALL_AND_TEST("\x00", 1, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00", 2, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00", 3, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00\x00", 4, DATA_UNSIGNED, buf, sizeof(buf), 2, "0",
0);
CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, DATA_UNSIGNED, buf, sizeof(buf), 2,
"0", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, DATA_UNSIGNED, buf, sizeof(buf),
2, "0", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, DATA_UNSIGNED, buf,
sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, DATA_UNSIGNED, buf,
sizeof(buf), 2, "0", 0);
/* max values for signed 1-8 byte integers */
CALL_AND_TEST("\xFF", 1, 0, buf, sizeof(buf), 4, "127", 0);
CALL_AND_TEST("\xFF\xFF", 2, 0, buf, sizeof(buf), 6, "32767", 0);
CALL_AND_TEST("\xFF\xFF\xFF", 3, 0, buf, sizeof(buf), 8, "8388607", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, 0, buf, sizeof(buf), 11, "2147483647",
0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, 0, buf, sizeof(buf), 13,
"549755813887", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, 0, buf, sizeof(buf), 16,
"140737488355327", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, 0, buf, sizeof(buf), 18,
"36028797018963967", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, 0, buf, sizeof(buf), 20,
"9223372036854775807", 0);
/* max values for unsigned 1-8 byte integers */
CALL_AND_TEST("\xFF", 1, DATA_UNSIGNED, buf, sizeof(buf), 4, "255", 0);
CALL_AND_TEST("\xFF\xFF", 2, DATA_UNSIGNED, buf, sizeof(buf), 6, "65535", 0);
CALL_AND_TEST("\xFF\xFF\xFF", 3, DATA_UNSIGNED, buf, sizeof(buf), 9,
"16777215", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, DATA_UNSIGNED, buf, sizeof(buf), 11,
"4294967295", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, DATA_UNSIGNED, buf, sizeof(buf), 14,
"1099511627775", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, DATA_UNSIGNED, buf, sizeof(buf),
16, "281474976710655", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, DATA_UNSIGNED, buf,
sizeof(buf), 18, "72057594037927935", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, DATA_UNSIGNED, buf,
sizeof(buf), 21, "18446744073709551615", 0);
/* some random values */
CALL_AND_TEST("\x52", 1, 0, buf, sizeof(buf), 4, "-46", 0);
CALL_AND_TEST("\x0E", 1, DATA_UNSIGNED, buf, sizeof(buf), 3, "14", 0);
CALL_AND_TEST("\x62\xCE", 2, 0, buf, sizeof(buf), 6, "-7474", 0);
CALL_AND_TEST("\x29\xD6", 2, DATA_UNSIGNED, buf, sizeof(buf), 6, "10710", 0);
CALL_AND_TEST("\x7F\xFF\x90", 3, 0, buf, sizeof(buf), 5, "-112", 0);
CALL_AND_TEST("\x00\xA1\x16", 3, DATA_UNSIGNED, buf, sizeof(buf), 6, "41238",
0);
CALL_AND_TEST("\x7F\xFF\xFF\xF7", 4, 0, buf, sizeof(buf), 3, "-9", 0);
CALL_AND_TEST("\x00\x00\x00\x5C", 4, DATA_UNSIGNED, buf, sizeof(buf), 3, "92",
0);
CALL_AND_TEST("\x7F\xFF\xFF\xFF\xFF\xFF\xDC\x63", 8, 0, buf, sizeof(buf), 6,
"-9117", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED, buf,
sizeof(buf), 6, "91234", 0);
#endif
/* speed test */
ut_chrono_t ch(__func__);
for (i = 0; i < 1000000; i++) {
row_raw_format_int("\x23", 1, 0, buf, sizeof(buf), &format_in_hex);
row_raw_format_int("\x23", 1, DATA_UNSIGNED, buf, sizeof(buf),
&format_in_hex);
row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8, 0, buf,
sizeof(buf), &format_in_hex);
row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED,
buf, sizeof(buf), &format_in_hex);
}
}
#endif /* HAVE_UT_CHRONO_T */
#endif /* UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT */