1418 lines
49 KiB
C++
1418 lines
49 KiB
C++
/*****************************************************************************
|
|
|
|
Copyright (c) 1996, 2019, Oracle and/or its affiliates. All Rights Reserved.
|
|
|
|
This program is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License, version 2.0, as published by the
|
|
Free Software Foundation.
|
|
|
|
This program is also distributed with certain software (including but not
|
|
limited to OpenSSL) that is licensed under separate terms, as designated in a
|
|
particular file or component or in included license documentation. The authors
|
|
of MySQL hereby grant you an additional permission to link the program and
|
|
your derivative works with the separately licensed software that they have
|
|
included with MySQL.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0,
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*****************************************************************************/
|
|
|
|
/** @file row/row0row.cc
|
|
General row routines
|
|
|
|
Created 4/20/1996 Heikki Tuuri
|
|
*******************************************************/
|
|
|
|
#include "row0row.h"
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include "btr0btr.h"
|
|
#include "data0type.h"
|
|
#include "dict0boot.h"
|
|
#include "dict0dict.h"
|
|
#include "ha_prototypes.h"
|
|
#include "lob0lob.h"
|
|
#include "mach0data.h"
|
|
#include "que0que.h"
|
|
#include "read0read.h"
|
|
#include "rem0cmp.h"
|
|
#include "row0ext.h"
|
|
#include "row0mysql.h"
|
|
#include "row0upd.h"
|
|
#include "trx0purge.h"
|
|
#include "trx0rec.h"
|
|
#include "trx0roll.h"
|
|
#include "trx0rseg.h"
|
|
#include "trx0trx.h"
|
|
#include "trx0undo.h"
|
|
#include "ut0mem.h"
|
|
|
|
/** When an insert or purge to a table is performed, this function builds
|
|
the entry to be inserted into or purged from an index on the table.
|
|
@return index entry which should be inserted or purged
|
|
@retval NULL if the externally stored columns in the clustered index record
|
|
are unavailable and ext != NULL, or row is missing some needed columns. */
|
|
dtuple_t *row_build_index_entry_low(
|
|
const dtuple_t *row, /*!< in: row which should be
|
|
inserted or purged */
|
|
const row_ext_t *ext, /*!< in: externally stored column
|
|
prefixes, or NULL */
|
|
const dict_index_t *index, /*!< in: index on the table */
|
|
mem_heap_t *heap, /*!< in: memory heap from which
|
|
the memory for the index entry
|
|
is allocated */
|
|
ulint flag) /*!< in: ROW_BUILD_NORMAL,
|
|
ROW_BUILD_FOR_PURGE
|
|
or ROW_BUILD_FOR_UNDO */
|
|
{
|
|
dtuple_t *entry;
|
|
ulint entry_len;
|
|
ulint i;
|
|
ulint num_v = 0;
|
|
|
|
entry_len = dict_index_get_n_fields(index);
|
|
|
|
if (flag == ROW_BUILD_FOR_INSERT && index->is_clustered()) {
|
|
num_v = dict_table_get_n_v_cols(index->table);
|
|
entry = dtuple_create_with_vcol(heap, entry_len, num_v);
|
|
} else {
|
|
entry = dtuple_create(heap, entry_len);
|
|
}
|
|
|
|
if (index->is_corrupted() && dict_index_has_virtual(index) &&
|
|
dict_index_get_online_status(index) == ONLINE_INDEX_ABORTED_DROPPED) {
|
|
/* See comments for virtual index in row_merge_drop_indexes().
|
|
In this case, just return the empty entry object */
|
|
return (entry);
|
|
}
|
|
|
|
if (dict_index_is_ibuf(index)) {
|
|
dtuple_set_n_fields_cmp(entry, entry_len);
|
|
/* There may only be externally stored columns
|
|
in a clustered index B-tree of a user table. */
|
|
ut_a(!ext);
|
|
} else {
|
|
dtuple_set_n_fields_cmp(entry, dict_index_get_n_unique_in_tree(index));
|
|
}
|
|
|
|
for (i = 0; i < entry_len + num_v; i++) {
|
|
const dict_field_t *ind_field = NULL;
|
|
const dict_col_t *col;
|
|
ulint col_no = 0;
|
|
dfield_t *dfield;
|
|
dfield_t *dfield2;
|
|
ulint len;
|
|
|
|
if (i >= entry_len) {
|
|
/* This is to insert new rows to cluster index */
|
|
ut_ad(index->is_clustered() && flag == ROW_BUILD_FOR_INSERT);
|
|
dfield = dtuple_get_nth_v_field(entry, i - entry_len);
|
|
col = &dict_table_get_nth_v_col(index->table, i - entry_len)->m_col;
|
|
|
|
} else {
|
|
ind_field = index->get_field(i);
|
|
col = ind_field->col;
|
|
col_no = dict_col_get_no(col);
|
|
dfield = dtuple_get_nth_field(entry, i);
|
|
}
|
|
#if DATA_MISSING != 0
|
|
#error "DATA_MISSING != 0"
|
|
#endif
|
|
|
|
if (col->is_virtual()) {
|
|
const dict_v_col_t *v_col = reinterpret_cast<const dict_v_col_t *>(col);
|
|
|
|
ut_ad(v_col->v_pos < dtuple_get_n_v_fields(row));
|
|
dfield2 = dtuple_get_nth_v_field(row, v_col->v_pos);
|
|
|
|
ut_ad(dfield_is_null(dfield2) || dfield2->len == UNIV_NO_INDEX_VALUE ||
|
|
dfield2->data);
|
|
} else {
|
|
dfield2 = dtuple_get_nth_field(row, col_no);
|
|
ut_ad(dfield_get_type(dfield2)->mtype == DATA_MISSING ||
|
|
(!(dfield_get_type(dfield2)->prtype & DATA_VIRTUAL)));
|
|
}
|
|
|
|
if (UNIV_UNLIKELY(dfield_get_type(dfield2)->mtype == DATA_MISSING)) {
|
|
/* The field has not been initialized in the row.
|
|
This should be from trx_undo_rec_get_partial_row(). */
|
|
return (NULL);
|
|
}
|
|
|
|
#ifdef UNIV_DEBUG
|
|
if (dfield_get_type(dfield2)->prtype & DATA_VIRTUAL &&
|
|
index->is_clustered()) {
|
|
ut_ad(flag == ROW_BUILD_FOR_INSERT);
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/* Special handle spatial index, set the first field
|
|
which is for store MBR. */
|
|
if (dict_index_is_spatial(index) && i == 0) {
|
|
double *mbr;
|
|
|
|
dfield_copy(dfield, dfield2);
|
|
dfield->type.prtype |= DATA_GIS_MBR;
|
|
|
|
/* Allocate memory for mbr field */
|
|
ulint mbr_len = DATA_MBR_LEN;
|
|
mbr = static_cast<double *>(mem_heap_alloc(heap, mbr_len));
|
|
|
|
/* Set mbr field data. */
|
|
dfield_set_data(dfield, mbr, mbr_len);
|
|
|
|
if (dfield2->data) {
|
|
uchar *dptr = NULL;
|
|
ulint dlen = 0;
|
|
ulint flen = 0;
|
|
double tmp_mbr[SPDIMS * 2];
|
|
mem_heap_t *temp_heap = NULL;
|
|
|
|
if (dfield_is_ext(dfield2)) {
|
|
if (flag == ROW_BUILD_FOR_PURGE) {
|
|
byte *ptr = NULL;
|
|
|
|
spatial_status_t spatial_status;
|
|
spatial_status = dfield_get_spatial_status(dfield2);
|
|
|
|
switch (spatial_status) {
|
|
case SPATIAL_ONLY:
|
|
ptr = static_cast<byte *>(dfield_get_data(dfield2));
|
|
ut_ad(dfield_get_len(dfield2) == DATA_MBR_LEN);
|
|
break;
|
|
|
|
case SPATIAL_MIXED:
|
|
ptr = static_cast<byte *>(dfield_get_data(dfield2)) +
|
|
dfield_get_len(dfield2);
|
|
break;
|
|
|
|
case SPATIAL_NONE:
|
|
/* Undo record is logged before
|
|
spatial index is created.*/
|
|
return (NULL);
|
|
|
|
case SPATIAL_UNKNOWN:
|
|
ut_ad(0);
|
|
}
|
|
|
|
memcpy(mbr, ptr, DATA_MBR_LEN);
|
|
continue;
|
|
}
|
|
|
|
if (flag == ROW_BUILD_FOR_UNDO &&
|
|
dict_table_has_atomic_blobs(index->table)) {
|
|
/* For build entry for undo, and
|
|
the table is Barrcuda, we need
|
|
to skip the prefix data. */
|
|
flen = BTR_EXTERN_FIELD_REF_SIZE;
|
|
ut_ad(dfield_get_len(dfield2) >= BTR_EXTERN_FIELD_REF_SIZE);
|
|
dptr = static_cast<byte *>(dfield_get_data(dfield2)) +
|
|
dfield_get_len(dfield2) - BTR_EXTERN_FIELD_REF_SIZE;
|
|
} else {
|
|
flen = dfield_get_len(dfield2);
|
|
dptr = static_cast<byte *>(dfield_get_data(dfield2));
|
|
}
|
|
|
|
temp_heap = mem_heap_create(1000);
|
|
|
|
const page_size_t page_size =
|
|
(ext != NULL) ? ext->page_size
|
|
: dict_table_page_size(index->table);
|
|
|
|
const dict_index_t *clust_index =
|
|
(ext == nullptr ? index->table->first_index() : ext->index);
|
|
|
|
dptr = lob::btr_copy_externally_stored_field(
|
|
nullptr, clust_index, &dlen, nullptr, dptr, page_size, flen,
|
|
false, temp_heap);
|
|
} else {
|
|
dptr = static_cast<uchar *>(dfield_get_data(dfield2));
|
|
dlen = dfield_get_len(dfield2);
|
|
}
|
|
|
|
if (dlen <= GEO_DATA_HEADER_SIZE) {
|
|
for (uint i = 0; i < SPDIMS; ++i) {
|
|
tmp_mbr[i * 2] = DBL_MAX;
|
|
tmp_mbr[i * 2 + 1] = -DBL_MAX;
|
|
}
|
|
} else {
|
|
get_mbr_from_store(index->rtr_srs.get(), dptr,
|
|
static_cast<uint>(dlen), SPDIMS, tmp_mbr, nullptr);
|
|
}
|
|
dfield_write_mbr(dfield, tmp_mbr);
|
|
if (temp_heap) {
|
|
mem_heap_free(temp_heap);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
len = dfield_get_len(dfield2);
|
|
|
|
dfield_copy(dfield, dfield2);
|
|
|
|
if (dfield_is_null(dfield)) {
|
|
continue;
|
|
}
|
|
|
|
if ((!ind_field || ind_field->prefix_len == 0) &&
|
|
(!dfield_is_ext(dfield) || index->is_clustered())) {
|
|
/* The dfield_copy() above suffices for
|
|
columns that are stored in-page, or for
|
|
clustered index record columns that are not
|
|
part of a column prefix in the PRIMARY KEY,
|
|
or for virtaul columns in cluster index record. */
|
|
continue;
|
|
}
|
|
|
|
/* If the column is stored externally (off-page) in
|
|
the clustered index, it must be an ordering field in
|
|
the secondary index. If !atomic_blobs, the only way
|
|
we may have a secondary index pointing to a clustered
|
|
index record with an off-page column is when it is a
|
|
column prefix index. If atomic_blobs, also fully
|
|
indexed long columns may be stored off-page. */
|
|
ut_ad(col->ord_part);
|
|
|
|
if (ext && !col->is_virtual()) {
|
|
/* See if the column is stored externally. */
|
|
const byte *buf = row_ext_lookup(ext, col_no, &len);
|
|
if (UNIV_LIKELY_NULL(buf)) {
|
|
if (UNIV_UNLIKELY(buf == field_ref_zero)) {
|
|
return (NULL);
|
|
}
|
|
dfield_set_data(dfield, buf, len);
|
|
}
|
|
|
|
if (ind_field->prefix_len == 0) {
|
|
/* If ROW_FORMAT=DYNAMIC or
|
|
ROW_FORMAT=COMPRESSED, we can have a
|
|
secondary index on an entire column
|
|
that is stored off-page in the
|
|
clustered index. As this is not a
|
|
prefix index (prefix_len == 0),
|
|
include the entire off-page column in
|
|
the secondary index record. */
|
|
continue;
|
|
}
|
|
} else if (dfield_is_ext(dfield)) {
|
|
/* This table is either in
|
|
(ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT)
|
|
or a purge record where the ordered part of
|
|
the field is not external.
|
|
In ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT,
|
|
the maximum column prefix
|
|
index length is 767 bytes, and the clustered
|
|
index record contains a 768-byte prefix of
|
|
each off-page column. */
|
|
ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE);
|
|
len -= BTR_EXTERN_FIELD_REF_SIZE;
|
|
dfield_set_len(dfield, len);
|
|
}
|
|
|
|
/* If a column prefix index, take only the prefix. */
|
|
if (ind_field->prefix_len) {
|
|
len = dtype_get_at_most_n_mbchars(
|
|
col->prtype, col->mbminmaxlen, ind_field->prefix_len, len,
|
|
static_cast<char *>(dfield_get_data(dfield)));
|
|
dfield_set_len(dfield, len);
|
|
}
|
|
}
|
|
|
|
return (entry);
|
|
}
|
|
|
|
/** An inverse function to row_build_index_entry. Builds a row from a
|
|
record in a clustered index, with possible indexing on ongoing
|
|
addition of new virtual columns.
|
|
@param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA;
|
|
@param[in] index clustered index
|
|
@param[in] rec record in the clustered index
|
|
@param[in] offsets rec_get_offsets(rec,index) or NULL
|
|
@param[in] col_table table, to check which
|
|
externally stored columns
|
|
occur in the ordering columns
|
|
of an index, or NULL if
|
|
index->table should be
|
|
consulted instead
|
|
@param[in] add_cols default values of added columns, or NULL
|
|
@param[in] add_v new virtual columns added
|
|
along with new indexes
|
|
@param[in] col_map mapping of old column
|
|
numbers to new ones, or NULL
|
|
@param[in] ext cache of externally stored column
|
|
prefixes, or NULL
|
|
@param[in] heap memory heap from which
|
|
the memory needed is allocated
|
|
@return own: row built; */
|
|
static inline dtuple_t *row_build_low(ulint type, const dict_index_t *index,
|
|
const rec_t *rec, const ulint *offsets,
|
|
const dict_table_t *col_table,
|
|
const dtuple_t *add_cols,
|
|
const dict_add_v_col_t *add_v,
|
|
const ulint *col_map, row_ext_t **ext,
|
|
mem_heap_t *heap) {
|
|
const byte *copy;
|
|
dtuple_t *row;
|
|
ulint n_ext_cols;
|
|
ulint *ext_cols = NULL; /* remove warning */
|
|
ulint len;
|
|
byte *buf;
|
|
ulint j;
|
|
mem_heap_t *tmp_heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_ad(index != NULL);
|
|
ut_ad(rec != NULL);
|
|
ut_ad(heap != NULL);
|
|
ut_ad(index->is_clustered());
|
|
ut_ad(!trx_sys_mutex_own());
|
|
ut_ad(!col_map || col_table);
|
|
|
|
if (!offsets) {
|
|
offsets = rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &tmp_heap);
|
|
} else {
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
}
|
|
|
|
#if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG
|
|
/* Some blob refs can be NULL during crash recovery before
|
|
trx_rollback_active() has completed execution, or when a concurrently
|
|
executing insert or update has committed the B-tree mini-transaction
|
|
but has not yet managed to restore the cursor position for writing
|
|
the big_rec. Note that the mini-transaction can be committed multiple
|
|
times, and the cursor restore can happen multiple times for single
|
|
insert or update statement. */
|
|
ut_a(!rec_offs_any_null_extern(rec, offsets) ||
|
|
trx_rw_is_active(row_get_rec_trx_id(rec, index, offsets), NULL, false));
|
|
#endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */
|
|
|
|
if (type != ROW_COPY_POINTERS) {
|
|
/* Take a copy of rec to heap */
|
|
buf = static_cast<byte *>(mem_heap_alloc(heap, rec_offs_size(offsets)));
|
|
|
|
copy = rec_copy(buf, rec, offsets);
|
|
} else {
|
|
copy = rec;
|
|
}
|
|
|
|
n_ext_cols = rec_offs_n_extern(offsets);
|
|
if (n_ext_cols) {
|
|
ext_cols = static_cast<ulint *>(
|
|
mem_heap_alloc(heap, n_ext_cols * sizeof *ext_cols));
|
|
}
|
|
|
|
/* Avoid a debug assertion in rec_offs_validate(). */
|
|
rec_offs_make_valid(copy, index, const_cast<ulint *>(offsets));
|
|
|
|
if (!col_table) {
|
|
ut_ad(!col_map);
|
|
ut_ad(!add_cols);
|
|
col_table = index->table;
|
|
}
|
|
|
|
if (add_cols) {
|
|
ut_ad(col_map);
|
|
row = dtuple_copy(add_cols, heap);
|
|
/* dict_table_copy_types() would set the fields to NULL */
|
|
for (ulint i = 0; i < col_table->get_n_cols(); i++) {
|
|
col_table->get_col(i)->copy_type(
|
|
dfield_get_type(dtuple_get_nth_field(row, i)));
|
|
}
|
|
} else if (add_v != NULL) {
|
|
row = dtuple_create_with_vcol(
|
|
heap, col_table->get_n_cols(),
|
|
dict_table_get_n_v_cols(col_table) + add_v->n_v_col);
|
|
dict_table_copy_types(row, col_table);
|
|
|
|
for (ulint i = 0; i < add_v->n_v_col; i++) {
|
|
add_v->v_col[i].m_col.copy_type(
|
|
dfield_get_type(dtuple_get_nth_v_field(row, i + col_table->n_v_def)));
|
|
}
|
|
} else {
|
|
row = dtuple_create_with_vcol(heap, col_table->get_n_cols(),
|
|
dict_table_get_n_v_cols(col_table));
|
|
dict_table_copy_types(row, col_table);
|
|
}
|
|
|
|
dtuple_set_info_bits(row, rec_get_info_bits(copy, rec_offs_comp(offsets)));
|
|
|
|
j = 0;
|
|
|
|
for (ulint i = 0; i < rec_offs_n_fields(offsets); i++) {
|
|
const dict_field_t *ind_field = index->get_field(i);
|
|
|
|
if (ind_field->prefix_len) {
|
|
/* Column prefixes can only occur in key
|
|
fields, which cannot be stored externally. For
|
|
a column prefix, there should also be the full
|
|
field in the clustered index tuple. The row
|
|
tuple comprises full fields, not prefixes. */
|
|
ut_ad(!rec_offs_nth_extern(offsets, i));
|
|
continue;
|
|
}
|
|
|
|
const dict_col_t *col = ind_field->col;
|
|
ulint col_no = dict_col_get_no(col);
|
|
|
|
if (col_map) {
|
|
col_no = col_map[col_no];
|
|
|
|
if (col_no == ULINT_UNDEFINED) {
|
|
/* dropped column */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
dfield_t *dfield = dtuple_get_nth_field(row, col_no);
|
|
|
|
const byte *field;
|
|
|
|
field = rec_get_nth_field_instant(copy, offsets, i, index, &len);
|
|
|
|
dfield_set_data(dfield, field, len);
|
|
|
|
if (rec_offs_nth_extern(offsets, i)) {
|
|
dfield_set_ext(dfield);
|
|
|
|
col = col_table->get_col(col_no);
|
|
|
|
if (col->ord_part) {
|
|
/* We will have to fetch prefixes of
|
|
externally stored columns that are
|
|
referenced by column prefixes. */
|
|
ext_cols[j++] = col_no;
|
|
}
|
|
}
|
|
}
|
|
|
|
rec_offs_make_valid(rec, index, const_cast<ulint *>(offsets));
|
|
|
|
ut_ad(dtuple_check_typed(row));
|
|
|
|
if (!ext) {
|
|
/* REDUNDANT and COMPACT formats store a local
|
|
768-byte prefix of each externally stored
|
|
column. No cache is needed.
|
|
|
|
During online table rebuild,
|
|
row_log_table_apply_delete_low()
|
|
may use a cache that was set up by
|
|
row_log_table_delete(). */
|
|
|
|
} else if (j) {
|
|
*ext = row_ext_create(index, j, ext_cols, index->table->flags, row,
|
|
dict_index_is_sdi(index), heap);
|
|
} else {
|
|
*ext = NULL;
|
|
}
|
|
|
|
if (tmp_heap) {
|
|
mem_heap_free(tmp_heap);
|
|
}
|
|
|
|
return (row);
|
|
}
|
|
|
|
/** An inverse function to row_build_index_entry. Builds a row from a
|
|
record in a clustered index.
|
|
@return own: row built; see the NOTE below! */
|
|
dtuple_t *row_build(ulint type, /*!< in: ROW_COPY_POINTERS or
|
|
ROW_COPY_DATA; the latter
|
|
copies also the data fields to
|
|
heap while the first only
|
|
places pointers to data fields
|
|
on the index page, and thus is
|
|
more efficient */
|
|
const dict_index_t *index, /*!< in: clustered index */
|
|
const rec_t *rec, /*!< in: record in the clustered
|
|
index; NOTE: in the case
|
|
ROW_COPY_POINTERS the data
|
|
fields in the row will point
|
|
directly into this record,
|
|
therefore, the buffer page of
|
|
this record must be at least
|
|
s-latched and the latch held
|
|
as long as the row dtuple is used! */
|
|
const ulint *offsets, /*!< in: rec_get_offsets(rec,index)
|
|
or NULL, in which case this function
|
|
will invoke rec_get_offsets() */
|
|
const dict_table_t *col_table,
|
|
/*!< in: table, to check which
|
|
externally stored columns
|
|
occur in the ordering columns
|
|
of an index, or NULL if
|
|
index->table should be
|
|
consulted instead */
|
|
const dtuple_t *add_cols,
|
|
/*!< in: default values of
|
|
added columns, or NULL */
|
|
const ulint *col_map, /*!< in: mapping of old column
|
|
numbers to new ones, or NULL */
|
|
row_ext_t **ext, /*!< out, own: cache of
|
|
externally stored column
|
|
prefixes, or NULL */
|
|
mem_heap_t *heap) /*!< in: memory heap from which
|
|
the memory needed is allocated */
|
|
{
|
|
return (row_build_low(type, index, rec, offsets, col_table, add_cols, NULL,
|
|
col_map, ext, heap));
|
|
}
|
|
|
|
/** An inverse function to row_build_index_entry. Builds a row from a
|
|
record in a clustered index, with possible indexing on ongoing
|
|
addition of new virtual columns.
|
|
@param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA;
|
|
@param[in] index clustered index
|
|
@param[in] rec record in the clustered index
|
|
@param[in] offsets rec_get_offsets(rec,index) or NULL
|
|
@param[in] col_table table, to check which
|
|
externally stored columns
|
|
occur in the ordering columns
|
|
of an index, or NULL if
|
|
index->table should be
|
|
consulted instead
|
|
@param[in] add_cols default values of added columns, or NULL
|
|
@param[in] add_v new virtual columns added
|
|
along with new indexes
|
|
@param[in] col_map mapping of old column
|
|
numbers to new ones, or NULL
|
|
@param[in] ext cache of externally stored column
|
|
prefixes, or NULL
|
|
@param[in] heap memory heap from which
|
|
the memory needed is allocated
|
|
@return own: row built; */
|
|
dtuple_t *row_build_w_add_vcol(ulint type, const dict_index_t *index,
|
|
const rec_t *rec, const ulint *offsets,
|
|
const dict_table_t *col_table,
|
|
const dtuple_t *add_cols,
|
|
const dict_add_v_col_t *add_v,
|
|
const ulint *col_map, row_ext_t **ext,
|
|
mem_heap_t *heap) {
|
|
return (row_build_low(type, index, rec, offsets, col_table, add_cols, add_v,
|
|
col_map, ext, heap));
|
|
}
|
|
|
|
/** Converts an index record to a typed data tuple.
|
|
@return index entry built; does not set info_bits, and the data fields
|
|
in the entry will point directly to rec */
|
|
dtuple_t *row_rec_to_index_entry_low(
|
|
const rec_t *rec, /*!< in: record in the index */
|
|
const dict_index_t *index, /*!< in: index */
|
|
const ulint *offsets, /*!< in: rec_get_offsets(rec, index) */
|
|
ulint *n_ext, /*!< out: number of externally
|
|
stored columns */
|
|
mem_heap_t *heap) /*!< in: memory heap from which
|
|
the memory needed is allocated */
|
|
{
|
|
dtuple_t *entry;
|
|
dfield_t *dfield;
|
|
ulint i;
|
|
const byte *field;
|
|
ulint len;
|
|
ulint rec_len;
|
|
|
|
ut_ad(rec != NULL);
|
|
ut_ad(heap != NULL);
|
|
ut_ad(index != NULL);
|
|
|
|
/* Because this function may be invoked by row0merge.cc
|
|
on a record whose header is in different format, the check
|
|
rec_offs_validate(rec, index, offsets) must be avoided here. */
|
|
ut_ad(n_ext);
|
|
*n_ext = 0;
|
|
|
|
rec_len = rec_offs_n_fields(offsets);
|
|
|
|
entry = dtuple_create(heap, rec_len);
|
|
|
|
dtuple_set_n_fields_cmp(entry, dict_index_get_n_unique_in_tree(index));
|
|
ut_ad(rec_len == dict_index_get_n_fields(index)
|
|
/* a record for older SYS_INDEXES table
|
|
(missing merge_threshold column) is acceptable. */
|
|
|| (index->table->id == DICT_INDEXES_ID &&
|
|
rec_len == dict_index_get_n_fields(index) - 1));
|
|
|
|
dict_index_copy_types(entry, index, rec_len);
|
|
|
|
for (i = 0; i < rec_len; i++) {
|
|
dfield = dtuple_get_nth_field(entry, i);
|
|
|
|
field = rec_get_nth_field_instant(rec, offsets, i, index, &len);
|
|
|
|
dfield_set_data(dfield, field, len);
|
|
|
|
if (rec_offs_nth_extern(offsets, i)) {
|
|
dfield_set_ext(dfield);
|
|
(*n_ext)++;
|
|
}
|
|
}
|
|
|
|
ut_ad(dtuple_check_typed(entry));
|
|
|
|
return (entry);
|
|
}
|
|
|
|
/** Converts an index record to a typed data tuple. NOTE that externally
|
|
stored (often big) fields are NOT copied to heap.
|
|
@return own: index entry built */
|
|
dtuple_t *row_rec_to_index_entry(
|
|
const rec_t *rec, /*!< in: record in the index */
|
|
const dict_index_t *index, /*!< in: index */
|
|
const ulint *offsets, /*!< in: rec_get_offsets(rec) */
|
|
ulint *n_ext, /*!< out: number of externally
|
|
stored columns */
|
|
mem_heap_t *heap) /*!< in: memory heap from which
|
|
the memory needed is allocated */
|
|
{
|
|
dtuple_t *entry;
|
|
byte *buf;
|
|
const rec_t *copy_rec;
|
|
DBUG_TRACE;
|
|
|
|
ut_ad(rec != NULL);
|
|
ut_ad(heap != NULL);
|
|
ut_ad(index != NULL);
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
|
|
/* Take a copy of rec to heap */
|
|
buf = static_cast<byte *>(mem_heap_alloc(heap, rec_offs_size(offsets)));
|
|
|
|
copy_rec = rec_copy(buf, rec, offsets);
|
|
|
|
rec_offs_make_valid(copy_rec, index, const_cast<ulint *>(offsets));
|
|
entry = row_rec_to_index_entry_low(copy_rec, index, offsets, n_ext, heap);
|
|
rec_offs_make_valid(rec, index, const_cast<ulint *>(offsets));
|
|
|
|
dtuple_set_info_bits(entry, rec_get_info_bits(rec, rec_offs_comp(offsets)));
|
|
|
|
return entry;
|
|
}
|
|
|
|
/** Builds from a secondary index record a row reference with which we can
|
|
search the clustered index record.
|
|
@return own: row reference built; see the NOTE below! */
|
|
dtuple_t *row_build_row_ref(
|
|
ulint type, /*!< in: ROW_COPY_DATA, or ROW_COPY_POINTERS:
|
|
the former copies also the data fields to
|
|
heap, whereas the latter only places pointers
|
|
to data fields on the index page */
|
|
const dict_index_t *index, /*!< in: secondary index */
|
|
const rec_t *rec, /*!< in: record in the index;
|
|
NOTE: in the case ROW_COPY_POINTERS
|
|
the data fields in the row will point
|
|
directly into this record, therefore,
|
|
the buffer page of this record must be
|
|
at least s-latched and the latch held
|
|
as long as the row reference is used! */
|
|
mem_heap_t *heap) /*!< in: memory heap from which the memory
|
|
needed is allocated */
|
|
{
|
|
dict_table_t *table;
|
|
dict_index_t *clust_index;
|
|
dfield_t *dfield;
|
|
dtuple_t *ref;
|
|
const byte *field;
|
|
ulint len;
|
|
ulint ref_len;
|
|
ulint pos;
|
|
byte *buf;
|
|
ulint clust_col_prefix_len;
|
|
ulint i;
|
|
mem_heap_t *tmp_heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint *offsets = offsets_;
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_ad(index != NULL);
|
|
ut_ad(rec != NULL);
|
|
ut_ad(heap != NULL);
|
|
ut_ad(!index->is_clustered());
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &tmp_heap);
|
|
/* Secondary indexes must not contain externally stored columns. */
|
|
ut_ad(!rec_offs_any_extern(offsets));
|
|
|
|
if (type == ROW_COPY_DATA) {
|
|
/* Take a copy of rec to heap */
|
|
|
|
buf = static_cast<byte *>(mem_heap_alloc(heap, rec_offs_size(offsets)));
|
|
|
|
rec = rec_copy(buf, rec, offsets);
|
|
/* Avoid a debug assertion in rec_offs_validate(). */
|
|
rec_offs_make_valid(rec, index, offsets);
|
|
}
|
|
|
|
table = index->table;
|
|
|
|
clust_index = table->first_index();
|
|
|
|
ref_len = dict_index_get_n_unique(clust_index);
|
|
|
|
ref = dtuple_create(heap, ref_len);
|
|
|
|
dict_index_copy_types(ref, clust_index, ref_len);
|
|
|
|
for (i = 0; i < ref_len; i++) {
|
|
dfield = dtuple_get_nth_field(ref, i);
|
|
|
|
pos = dict_index_get_nth_field_pos(index, clust_index, i);
|
|
|
|
ut_a(pos != ULINT_UNDEFINED);
|
|
|
|
field = rec_get_nth_field(rec, offsets, pos, &len);
|
|
|
|
dfield_set_data(dfield, field, len);
|
|
|
|
/* If the primary key contains a column prefix, then the
|
|
secondary index may contain a longer prefix of the same
|
|
column, or the full column, and we must adjust the length
|
|
accordingly. */
|
|
|
|
clust_col_prefix_len = clust_index->get_field(i)->prefix_len;
|
|
|
|
if (clust_col_prefix_len > 0) {
|
|
if (len != UNIV_SQL_NULL) {
|
|
const dtype_t *dtype = dfield_get_type(dfield);
|
|
|
|
dfield_set_len(dfield, dtype_get_at_most_n_mbchars(
|
|
dtype->prtype, dtype->mbminmaxlen,
|
|
clust_col_prefix_len, len, (char *)field));
|
|
}
|
|
}
|
|
}
|
|
|
|
ut_ad(dtuple_check_typed(ref));
|
|
if (tmp_heap) {
|
|
mem_heap_free(tmp_heap);
|
|
}
|
|
|
|
return (ref);
|
|
}
|
|
|
|
/** Builds from a secondary index record a row reference with which we can
|
|
search the clustered index record. */
|
|
void row_build_row_ref_in_tuple(
|
|
dtuple_t *ref, /*!< in/out: row reference built;
|
|
see the NOTE below! */
|
|
const rec_t *rec, /*!< in: record in the index;
|
|
NOTE: the data fields in ref
|
|
will point directly into this
|
|
record, therefore, the buffer
|
|
page of this record must be at
|
|
least s-latched and the latch
|
|
held as long as the row
|
|
reference is used! */
|
|
const dict_index_t *index, /*!< in: secondary index */
|
|
ulint *offsets, /*!< in: rec_get_offsets(rec, index)
|
|
or NULL */
|
|
trx_t *trx) /*!< in: transaction */
|
|
{
|
|
const dict_index_t *clust_index;
|
|
dfield_t *dfield;
|
|
const byte *field;
|
|
ulint len;
|
|
ulint ref_len;
|
|
ulint pos;
|
|
ulint clust_col_prefix_len;
|
|
ulint i;
|
|
mem_heap_t *heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_a(ref);
|
|
ut_a(index);
|
|
ut_a(rec);
|
|
ut_ad(!index->is_clustered());
|
|
ut_a(index->table);
|
|
|
|
clust_index = index->table->first_index();
|
|
ut_ad(clust_index);
|
|
|
|
if (!offsets) {
|
|
offsets = rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &heap);
|
|
} else {
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
}
|
|
|
|
/* Secondary indexes must not contain externally stored columns. */
|
|
ut_ad(!rec_offs_any_extern(offsets));
|
|
ref_len = dict_index_get_n_unique(clust_index);
|
|
|
|
ut_ad(ref_len == dtuple_get_n_fields(ref));
|
|
|
|
dict_index_copy_types(ref, clust_index, ref_len);
|
|
|
|
for (i = 0; i < ref_len; i++) {
|
|
dfield = dtuple_get_nth_field(ref, i);
|
|
|
|
pos = dict_index_get_nth_field_pos(index, clust_index, i);
|
|
|
|
ut_a(pos != ULINT_UNDEFINED);
|
|
|
|
field = rec_get_nth_field(rec, offsets, pos, &len);
|
|
|
|
dfield_set_data(dfield, field, len);
|
|
|
|
/* If the primary key contains a column prefix, then the
|
|
secondary index may contain a longer prefix of the same
|
|
column, or the full column, and we must adjust the length
|
|
accordingly. */
|
|
|
|
clust_col_prefix_len = clust_index->get_field(i)->prefix_len;
|
|
|
|
if (clust_col_prefix_len > 0) {
|
|
if (len != UNIV_SQL_NULL) {
|
|
const dtype_t *dtype = dfield_get_type(dfield);
|
|
|
|
dfield_set_len(dfield, dtype_get_at_most_n_mbchars(
|
|
dtype->prtype, dtype->mbminmaxlen,
|
|
clust_col_prefix_len, len, (char *)field));
|
|
}
|
|
}
|
|
}
|
|
|
|
ut_ad(dtuple_check_typed(ref));
|
|
if (UNIV_LIKELY_NULL(heap)) {
|
|
mem_heap_free(heap);
|
|
}
|
|
}
|
|
|
|
/** Searches the clustered index record for a row, if we have the row reference.
|
|
@return true if found */
|
|
ibool row_search_on_row_ref(btr_pcur_t *pcur, /*!< out: persistent cursor, which
|
|
must be closed by the caller */
|
|
ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */
|
|
dict_table_t *table, /*!< in: table */
|
|
const dtuple_t *ref, /*!< in: row reference */
|
|
mtr_t *mtr) /*!< in/out: mtr */
|
|
{
|
|
ulint low_match;
|
|
rec_t *rec;
|
|
dict_index_t *index;
|
|
|
|
ut_ad(dtuple_check_typed(ref));
|
|
|
|
index = table->first_index();
|
|
|
|
ut_a(dtuple_get_n_fields(ref) == dict_index_get_n_unique(index));
|
|
|
|
btr_pcur_open(index, ref, PAGE_CUR_LE, mode, pcur, mtr);
|
|
|
|
low_match = btr_pcur_get_low_match(pcur);
|
|
|
|
rec = btr_pcur_get_rec(pcur);
|
|
|
|
if (page_rec_is_infimum(rec)) {
|
|
return (FALSE);
|
|
}
|
|
|
|
if (low_match != dtuple_get_n_fields(ref)) {
|
|
return (FALSE);
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
/** Fetches the clustered index record for a secondary index record. The latches
|
|
on the secondary index record are preserved.
|
|
@return record or NULL, if no record found */
|
|
rec_t *row_get_clust_rec(
|
|
ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */
|
|
const rec_t *rec, /*!< in: record in a secondary index */
|
|
const dict_index_t *index, /*!< in: secondary index */
|
|
dict_index_t **clust_index, /*!< out: clustered index */
|
|
mtr_t *mtr) /*!< in: mtr */
|
|
{
|
|
mem_heap_t *heap;
|
|
dtuple_t *ref;
|
|
dict_table_t *table;
|
|
btr_pcur_t pcur;
|
|
ibool found;
|
|
rec_t *clust_rec;
|
|
|
|
ut_ad(!index->is_clustered());
|
|
|
|
table = index->table;
|
|
|
|
heap = mem_heap_create(256);
|
|
|
|
ref = row_build_row_ref(ROW_COPY_POINTERS, index, rec, heap);
|
|
|
|
found = row_search_on_row_ref(&pcur, mode, table, ref, mtr);
|
|
|
|
clust_rec = found ? btr_pcur_get_rec(&pcur) : NULL;
|
|
|
|
mem_heap_free(heap);
|
|
|
|
btr_pcur_close(&pcur);
|
|
|
|
*clust_index = table->first_index();
|
|
|
|
return (clust_rec);
|
|
}
|
|
|
|
/** Parse the integer data from specified field, which could be
|
|
DATA_INT, DATA_FLOAT or DATA_DOUBLE. We could return 0 if
|
|
1) the value is less than 0 and the type is not unsigned
|
|
or 2) the field is null.
|
|
@param[in] field field to read the int value
|
|
@return the integer value read from the field, 0 for negative signed
|
|
int or NULL field */
|
|
ib_uint64_t row_parse_int_from_field(const dfield_t *field) {
|
|
const dtype_t *dtype = dfield_get_type(field);
|
|
ulint len = dfield_get_len(field);
|
|
const byte *data = static_cast<const byte *>(dfield_get_data(field));
|
|
ulint mtype = dtype_get_mtype(dtype);
|
|
bool unsigned_type = dtype->prtype & DATA_UNSIGNED;
|
|
|
|
if (dfield_is_null(field)) {
|
|
return (0);
|
|
} else {
|
|
return (row_parse_int(data, len, mtype, unsigned_type));
|
|
}
|
|
}
|
|
|
|
/** Read the autoinc counter from the clustered index row.
|
|
@param[in] row row to read the autoinc counter
|
|
@param[in] n autoinc counter is in the nth field
|
|
@return the autoinc counter read */
|
|
ib_uint64_t row_get_autoinc_counter(const dtuple_t *row, ulint n) {
|
|
const dfield_t *field = dtuple_get_nth_field(row, n);
|
|
|
|
return (row_parse_int_from_field(field));
|
|
}
|
|
|
|
/** Searches an index record.
|
|
@return whether the record was found or buffered */
|
|
enum row_search_result row_search_index_entry(
|
|
dict_index_t *index, /*!< in: index */
|
|
const dtuple_t *entry, /*!< in: index entry */
|
|
ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */
|
|
btr_pcur_t *pcur, /*!< in/out: persistent cursor, which must
|
|
be closed by the caller */
|
|
mtr_t *mtr) /*!< in: mtr */
|
|
{
|
|
ulint n_fields;
|
|
ulint low_match;
|
|
rec_t *rec;
|
|
|
|
ut_ad(dtuple_check_typed(entry));
|
|
|
|
if (dict_index_is_spatial(index)) {
|
|
ut_ad(mode & BTR_MODIFY_LEAF || mode & BTR_MODIFY_TREE);
|
|
rtr_pcur_open(index, entry, PAGE_CUR_RTREE_LOCATE, mode, pcur, mtr);
|
|
} else {
|
|
btr_pcur_open(index, entry, PAGE_CUR_LE, mode, pcur, mtr);
|
|
}
|
|
|
|
switch (btr_pcur_get_btr_cur(pcur)->flag) {
|
|
case BTR_CUR_UNSET:
|
|
ut_ad(0);
|
|
break;
|
|
|
|
case BTR_CUR_DELETE_REF:
|
|
ut_a(mode & BTR_DELETE && !dict_index_is_spatial(index));
|
|
return (ROW_NOT_DELETED_REF);
|
|
|
|
case BTR_CUR_DEL_MARK_IBUF:
|
|
case BTR_CUR_DELETE_IBUF:
|
|
case BTR_CUR_INSERT_TO_IBUF:
|
|
return (ROW_BUFFERED);
|
|
|
|
case BTR_CUR_HASH:
|
|
case BTR_CUR_HASH_FAIL:
|
|
case BTR_CUR_BINARY:
|
|
break;
|
|
}
|
|
|
|
low_match = btr_pcur_get_low_match(pcur);
|
|
|
|
rec = btr_pcur_get_rec(pcur);
|
|
|
|
n_fields = dtuple_get_n_fields(entry);
|
|
|
|
if (page_rec_is_infimum(rec)) {
|
|
return (ROW_NOT_FOUND);
|
|
} else if (low_match != n_fields) {
|
|
return (ROW_NOT_FOUND);
|
|
}
|
|
|
|
return (ROW_FOUND);
|
|
}
|
|
|
|
/** Formats the raw data in "data" (in InnoDB on-disk format) that is of
|
|
type DATA_INT using "prtype" and writes the result to "buf".
|
|
If the data is in unknown format, then nothing is written to "buf",
|
|
0 is returned and "format_in_hex" is set to TRUE, otherwise
|
|
"format_in_hex" is left untouched.
|
|
Not more than "buf_size" bytes are written to "buf".
|
|
The result is always '\0'-terminated (provided buf_size > 0) and the
|
|
number of bytes that were written to "buf" is returned (including the
|
|
terminating '\0').
|
|
@return number of bytes that were written */
|
|
static ulint row_raw_format_int(const char *data, /*!< in: raw data */
|
|
ulint data_len, /*!< in: raw data length
|
|
in bytes */
|
|
ulint prtype, /*!< in: precise type */
|
|
char *buf, /*!< out: output buffer */
|
|
ulint buf_size, /*!< in: output buffer size
|
|
in bytes */
|
|
ibool *format_in_hex) /*!< out: should the data
|
|
be formated in hex */
|
|
{
|
|
ulint ret;
|
|
|
|
if (data_len <= sizeof(ib_uint64_t)) {
|
|
ib_uint64_t value;
|
|
ibool unsigned_type = prtype & DATA_UNSIGNED;
|
|
|
|
value = mach_read_int_type((const byte *)data, data_len, unsigned_type);
|
|
|
|
ret =
|
|
snprintf(buf, buf_size, unsigned_type ? UINT64PF : "%" PRId64, value) +
|
|
1;
|
|
} else {
|
|
*format_in_hex = TRUE;
|
|
ret = 0;
|
|
}
|
|
|
|
return (ut_min(ret, buf_size));
|
|
}
|
|
|
|
/** Formats the raw data in "data" (in InnoDB on-disk format) that is of
|
|
type DATA_(CHAR|VARCHAR|MYSQL|VARMYSQL) using "prtype" and writes the
|
|
result to "buf".
|
|
If the data is in binary format, then nothing is written to "buf",
|
|
0 is returned and "format_in_hex" is set to TRUE, otherwise
|
|
"format_in_hex" is left untouched.
|
|
Not more than "buf_size" bytes are written to "buf".
|
|
The result is always '\0'-terminated (provided buf_size > 0) and the
|
|
number of bytes that were written to "buf" is returned (including the
|
|
terminating '\0').
|
|
@return number of bytes that were written */
|
|
static ulint row_raw_format_str(const char *data, /*!< in: raw data */
|
|
ulint data_len, /*!< in: raw data length
|
|
in bytes */
|
|
ulint prtype, /*!< in: precise type */
|
|
char *buf, /*!< out: output buffer */
|
|
ulint buf_size, /*!< in: output buffer size
|
|
in bytes */
|
|
ibool *format_in_hex) /*!< out: should the data
|
|
be formated in hex */
|
|
{
|
|
ulint charset_coll;
|
|
|
|
if (buf_size == 0) {
|
|
return (0);
|
|
}
|
|
|
|
/* we assume system_charset_info is UTF-8 */
|
|
|
|
charset_coll = dtype_get_charset_coll(prtype);
|
|
|
|
if (UNIV_LIKELY(dtype_is_utf8(prtype))) {
|
|
return (ut_str_sql_format(data, data_len, buf, buf_size));
|
|
}
|
|
/* else */
|
|
|
|
if (charset_coll == DATA_MYSQL_BINARY_CHARSET_COLL) {
|
|
*format_in_hex = TRUE;
|
|
return (0);
|
|
}
|
|
/* else */
|
|
|
|
return (innobase_raw_format(data, data_len, charset_coll, buf, buf_size));
|
|
}
|
|
|
|
/** Formats the raw data in "data" (in InnoDB on-disk format) using
|
|
"dict_field" and writes the result to "buf".
|
|
Not more than "buf_size" bytes are written to "buf".
|
|
The result is always NUL-terminated (provided buf_size is positive) and the
|
|
number of bytes that were written to "buf" is returned (including the
|
|
terminating NUL).
|
|
@return number of bytes that were written */
|
|
ulint row_raw_format(const char *data, /*!< in: raw data */
|
|
ulint data_len, /*!< in: raw data length
|
|
in bytes */
|
|
const dict_field_t *dict_field, /*!< in: index field */
|
|
char *buf, /*!< out: output buffer */
|
|
ulint buf_size) /*!< in: output buffer size
|
|
in bytes */
|
|
{
|
|
ulint mtype;
|
|
ulint prtype;
|
|
ulint ret;
|
|
ibool format_in_hex;
|
|
|
|
if (buf_size == 0) {
|
|
return (0);
|
|
}
|
|
|
|
ut_ad(data_len != UNIV_SQL_ADD_COL_DEFAULT);
|
|
|
|
if (data_len == UNIV_SQL_NULL) {
|
|
ret = snprintf((char *)buf, buf_size, "NULL") + 1;
|
|
|
|
return (ut_min(ret, buf_size));
|
|
}
|
|
|
|
mtype = dict_field->col->mtype;
|
|
prtype = dict_field->col->prtype;
|
|
|
|
format_in_hex = FALSE;
|
|
|
|
switch (mtype) {
|
|
case DATA_INT:
|
|
|
|
ret = row_raw_format_int(data, data_len, prtype, buf, buf_size,
|
|
&format_in_hex);
|
|
if (format_in_hex) {
|
|
goto format_in_hex;
|
|
}
|
|
break;
|
|
case DATA_CHAR:
|
|
case DATA_VARCHAR:
|
|
case DATA_MYSQL:
|
|
case DATA_VARMYSQL:
|
|
|
|
ret = row_raw_format_str(data, data_len, prtype, buf, buf_size,
|
|
&format_in_hex);
|
|
if (format_in_hex) {
|
|
goto format_in_hex;
|
|
}
|
|
|
|
break;
|
|
/* XXX support more data types */
|
|
default:
|
|
format_in_hex:
|
|
|
|
if (UNIV_LIKELY(buf_size > 2)) {
|
|
memcpy(buf, "0x", 2);
|
|
buf += 2;
|
|
buf_size -= 2;
|
|
ret = 2 + ut_raw_to_hex(data, data_len, buf, buf_size);
|
|
} else {
|
|
buf[0] = '\0';
|
|
ret = 1;
|
|
}
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
dfield_t *Multi_value_entry_builder_normal::find_multi_value_field() {
|
|
uint16_t i = 0;
|
|
dfield_t *field = nullptr;
|
|
for (; i < m_row->n_v_fields; ++i) {
|
|
field = &m_row->v_fields[i];
|
|
if (!dfield_is_multi_value(field) ||
|
|
(m_mv_field_no = m_index->has_multi_value_col(
|
|
dict_table_get_nth_v_col(m_index->table, i))) == 0) {
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return (i == m_row->n_v_fields ? nullptr : field);
|
|
}
|
|
|
|
#ifdef UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT
|
|
|
|
#ifdef HAVE_UT_CHRONO_T
|
|
|
|
void test_row_raw_format_int() {
|
|
ulint ret;
|
|
char buf[128];
|
|
ibool format_in_hex;
|
|
ulint i;
|
|
|
|
#define CALL_AND_TEST(data, data_len, prtype, buf, buf_size, ret_expected, \
|
|
buf_expected, format_in_hex_expected) \
|
|
do { \
|
|
ibool ok = TRUE; \
|
|
ulint i; \
|
|
memset(buf, 'x', 10); \
|
|
buf[10] = '\0'; \
|
|
format_in_hex = FALSE; \
|
|
fprintf(stderr, "TESTING \"\\x"); \
|
|
for (i = 0; i < data_len; i++) { \
|
|
fprintf(stderr, "%02hhX", data[i]); \
|
|
} \
|
|
fprintf(stderr, "\", %lu, %lu, %lu\n", (ulint)data_len, (ulint)prtype, \
|
|
(ulint)buf_size); \
|
|
ret = row_raw_format_int(data, data_len, prtype, buf, buf_size, \
|
|
&format_in_hex); \
|
|
if (ret != ret_expected) { \
|
|
fprintf(stderr, "expected ret %lu, got %lu\n", (ulint)ret_expected, \
|
|
ret); \
|
|
ok = FALSE; \
|
|
} \
|
|
if (strcmp((char *)buf, buf_expected) != 0) { \
|
|
fprintf(stderr, "expected buf \"%s\", got \"%s\"\n", buf_expected, buf); \
|
|
ok = FALSE; \
|
|
} \
|
|
if (format_in_hex != format_in_hex_expected) { \
|
|
fprintf(stderr, "expected format_in_hex %d, got %d\n", \
|
|
(int)format_in_hex_expected, (int)format_in_hex); \
|
|
ok = FALSE; \
|
|
} \
|
|
if (ok) { \
|
|
fprintf(stderr, "OK: %lu, \"%s\" %d\n\n", (ulint)ret, buf, \
|
|
(int)format_in_hex); \
|
|
} else { \
|
|
return; \
|
|
} \
|
|
} while (0)
|
|
|
|
#if 1
|
|
/* min values for signed 1-8 byte integers */
|
|
|
|
CALL_AND_TEST("\x00", 1, 0, buf, sizeof(buf), 5, "-128", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00", 2, 0, buf, sizeof(buf), 7, "-32768", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00", 3, 0, buf, sizeof(buf), 9, "-8388608", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00", 4, 0, buf, sizeof(buf), 12, "-2147483648",
|
|
0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, 0, buf, sizeof(buf), 14,
|
|
"-549755813888", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, 0, buf, sizeof(buf), 17,
|
|
"-140737488355328", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, 0, buf, sizeof(buf), 19,
|
|
"-36028797018963968", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, 0, buf, sizeof(buf), 21,
|
|
"-9223372036854775808", 0);
|
|
|
|
/* min values for unsigned 1-8 byte integers */
|
|
|
|
CALL_AND_TEST("\x00", 1, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00", 2, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00", 3, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00", 4, DATA_UNSIGNED, buf, sizeof(buf), 2, "0",
|
|
0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, DATA_UNSIGNED, buf, sizeof(buf), 2,
|
|
"0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, DATA_UNSIGNED, buf, sizeof(buf),
|
|
2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, DATA_UNSIGNED, buf,
|
|
sizeof(buf), 2, "0", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, DATA_UNSIGNED, buf,
|
|
sizeof(buf), 2, "0", 0);
|
|
|
|
/* max values for signed 1-8 byte integers */
|
|
|
|
CALL_AND_TEST("\xFF", 1, 0, buf, sizeof(buf), 4, "127", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF", 2, 0, buf, sizeof(buf), 6, "32767", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF", 3, 0, buf, sizeof(buf), 8, "8388607", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, 0, buf, sizeof(buf), 11, "2147483647",
|
|
0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, 0, buf, sizeof(buf), 13,
|
|
"549755813887", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, 0, buf, sizeof(buf), 16,
|
|
"140737488355327", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, 0, buf, sizeof(buf), 18,
|
|
"36028797018963967", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, 0, buf, sizeof(buf), 20,
|
|
"9223372036854775807", 0);
|
|
|
|
/* max values for unsigned 1-8 byte integers */
|
|
|
|
CALL_AND_TEST("\xFF", 1, DATA_UNSIGNED, buf, sizeof(buf), 4, "255", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF", 2, DATA_UNSIGNED, buf, sizeof(buf), 6, "65535", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF", 3, DATA_UNSIGNED, buf, sizeof(buf), 9,
|
|
"16777215", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, DATA_UNSIGNED, buf, sizeof(buf), 11,
|
|
"4294967295", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, DATA_UNSIGNED, buf, sizeof(buf), 14,
|
|
"1099511627775", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, DATA_UNSIGNED, buf, sizeof(buf),
|
|
16, "281474976710655", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, DATA_UNSIGNED, buf,
|
|
sizeof(buf), 18, "72057594037927935", 0);
|
|
|
|
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, DATA_UNSIGNED, buf,
|
|
sizeof(buf), 21, "18446744073709551615", 0);
|
|
|
|
/* some random values */
|
|
|
|
CALL_AND_TEST("\x52", 1, 0, buf, sizeof(buf), 4, "-46", 0);
|
|
|
|
CALL_AND_TEST("\x0E", 1, DATA_UNSIGNED, buf, sizeof(buf), 3, "14", 0);
|
|
|
|
CALL_AND_TEST("\x62\xCE", 2, 0, buf, sizeof(buf), 6, "-7474", 0);
|
|
|
|
CALL_AND_TEST("\x29\xD6", 2, DATA_UNSIGNED, buf, sizeof(buf), 6, "10710", 0);
|
|
|
|
CALL_AND_TEST("\x7F\xFF\x90", 3, 0, buf, sizeof(buf), 5, "-112", 0);
|
|
|
|
CALL_AND_TEST("\x00\xA1\x16", 3, DATA_UNSIGNED, buf, sizeof(buf), 6, "41238",
|
|
0);
|
|
|
|
CALL_AND_TEST("\x7F\xFF\xFF\xF7", 4, 0, buf, sizeof(buf), 3, "-9", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x5C", 4, DATA_UNSIGNED, buf, sizeof(buf), 3, "92",
|
|
0);
|
|
|
|
CALL_AND_TEST("\x7F\xFF\xFF\xFF\xFF\xFF\xDC\x63", 8, 0, buf, sizeof(buf), 6,
|
|
"-9117", 0);
|
|
|
|
CALL_AND_TEST("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED, buf,
|
|
sizeof(buf), 6, "91234", 0);
|
|
#endif
|
|
|
|
/* speed test */
|
|
|
|
ut_chrono_t ch(__func__);
|
|
|
|
for (i = 0; i < 1000000; i++) {
|
|
row_raw_format_int("\x23", 1, 0, buf, sizeof(buf), &format_in_hex);
|
|
row_raw_format_int("\x23", 1, DATA_UNSIGNED, buf, sizeof(buf),
|
|
&format_in_hex);
|
|
|
|
row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8, 0, buf,
|
|
sizeof(buf), &format_in_hex);
|
|
row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED,
|
|
buf, sizeof(buf), &format_in_hex);
|
|
}
|
|
}
|
|
|
|
#endif /* HAVE_UT_CHRONO_T */
|
|
|
|
#endif /* UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT */
|