268 lines
9.4 KiB
C++
268 lines
9.4 KiB
C++
/* Copyright (c) 2004, 2017, Oracle and/or its affiliates. All rights reserved.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License, version 2.0,
|
|
as published by the Free Software Foundation.
|
|
|
|
This program is also distributed with certain software (including
|
|
but not limited to OpenSSL) that is licensed under separate terms,
|
|
as designated in a particular file or component or in included license
|
|
documentation. The authors of MySQL hereby grant you an additional
|
|
permission to link the program and your derivative works with the
|
|
separately licensed software that they have included with MySQL.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License, version 2.0, for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
/** @file ha_example.h
|
|
|
|
@brief
|
|
The ha_example engine is a stubbed storage engine for example purposes only;
|
|
it does nothing at this point. Its purpose is to provide a source
|
|
code illustration of how to begin writing new storage engines; see also
|
|
/storage/example/ha_example.cc.
|
|
|
|
@note
|
|
Please read ha_example.cc before reading this file.
|
|
Reminder: The example storage engine implements all methods that are
|
|
*required* to be implemented. For a full list of all methods that you can
|
|
implement, see handler.h.
|
|
|
|
@see
|
|
/sql/handler.h and /storage/example/ha_example.cc
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include "my_base.h" /* ha_rows */
|
|
#include "my_compiler.h"
|
|
#include "my_inttypes.h"
|
|
#include "sql/handler.h" /* handler */
|
|
#include "thr_lock.h" /* THR_LOCK, THR_LOCK_DATA */
|
|
|
|
/** @brief
|
|
Example_share is a class that will be shared among all open handlers.
|
|
This example implements the minimum of what you will probably need.
|
|
*/
|
|
class Example_share : public Handler_share {
|
|
public:
|
|
THR_LOCK lock;
|
|
Example_share();
|
|
~Example_share() { thr_lock_delete(&lock); }
|
|
};
|
|
|
|
/** @brief
|
|
Class definition for the storage engine
|
|
*/
|
|
class ha_example : public handler {
|
|
THR_LOCK_DATA lock; ///< MySQL lock
|
|
Example_share *share; ///< Shared lock info
|
|
Example_share *get_share(); ///< Get the share
|
|
|
|
public:
|
|
ha_example(handlerton *hton, TABLE_SHARE *table_arg);
|
|
~ha_example() {}
|
|
|
|
/** @brief
|
|
The name that will be used for display purposes.
|
|
*/
|
|
const char *table_type() const { return "EXAMPLE"; }
|
|
|
|
/**
|
|
Replace key algorithm with one supported by SE, return the default key
|
|
algorithm for SE if explicit key algorithm was not provided.
|
|
|
|
@sa handler::adjust_index_algorithm().
|
|
*/
|
|
virtual enum ha_key_alg get_default_index_algorithm() const {
|
|
return HA_KEY_ALG_HASH;
|
|
}
|
|
virtual bool is_index_algorithm_supported(enum ha_key_alg key_alg) const {
|
|
return key_alg == HA_KEY_ALG_HASH;
|
|
}
|
|
|
|
/** @brief
|
|
This is a list of flags that indicate what functionality the storage engine
|
|
implements. The current table flags are documented in handler.h
|
|
*/
|
|
ulonglong table_flags() const {
|
|
/*
|
|
We are saying that this engine is just statement capable to have
|
|
an engine that can only handle statement-based logging. This is
|
|
used in testing.
|
|
*/
|
|
return HA_BINLOG_STMT_CAPABLE;
|
|
}
|
|
|
|
/** @brief
|
|
This is a bitmap of flags that indicates how the storage engine
|
|
implements indexes. The current index flags are documented in
|
|
handler.h. If you do not implement indexes, just return zero here.
|
|
|
|
@details
|
|
part is the key part to check. First key part is 0.
|
|
If all_parts is set, MySQL wants to know the flags for the combined
|
|
index, up to and including 'part'.
|
|
*/
|
|
ulong index_flags(uint inx MY_ATTRIBUTE((unused)),
|
|
uint part MY_ATTRIBUTE((unused)),
|
|
bool all_parts MY_ATTRIBUTE((unused))) const {
|
|
return 0;
|
|
}
|
|
|
|
/** @brief
|
|
unireg.cc will call max_supported_record_length(), max_supported_keys(),
|
|
max_supported_key_parts(), uint max_supported_key_length()
|
|
to make sure that the storage engine can handle the data it is about to
|
|
send. Return *real* limits of your storage engine here; MySQL will do
|
|
min(your_limits, MySQL_limits) automatically.
|
|
*/
|
|
uint max_supported_record_length() const { return HA_MAX_REC_LENGTH; }
|
|
|
|
/** @brief
|
|
unireg.cc will call this to make sure that the storage engine can handle
|
|
the data it is about to send. Return *real* limits of your storage engine
|
|
here; MySQL will do min(your_limits, MySQL_limits) automatically.
|
|
|
|
@details
|
|
There is no need to implement ..._key_... methods if your engine doesn't
|
|
support indexes.
|
|
*/
|
|
uint max_supported_keys() const { return 0; }
|
|
|
|
/** @brief
|
|
unireg.cc will call this to make sure that the storage engine can handle
|
|
the data it is about to send. Return *real* limits of your storage engine
|
|
here; MySQL will do min(your_limits, MySQL_limits) automatically.
|
|
|
|
@details
|
|
There is no need to implement ..._key_... methods if your engine doesn't
|
|
support indexes.
|
|
*/
|
|
uint max_supported_key_parts() const { return 0; }
|
|
|
|
/** @brief
|
|
unireg.cc will call this to make sure that the storage engine can handle
|
|
the data it is about to send. Return *real* limits of your storage engine
|
|
here; MySQL will do min(your_limits, MySQL_limits) automatically.
|
|
|
|
@details
|
|
There is no need to implement ..._key_... methods if your engine doesn't
|
|
support indexes.
|
|
*/
|
|
uint max_supported_key_length() const { return 0; }
|
|
|
|
/** @brief
|
|
Called in test_quick_select to determine if indexes should be used.
|
|
*/
|
|
virtual double scan_time() {
|
|
return (double)(stats.records + stats.deleted) / 20.0 + 10;
|
|
}
|
|
|
|
/** @brief
|
|
This method will never be called if you do not implement indexes.
|
|
*/
|
|
virtual double read_time(uint, uint, ha_rows rows) {
|
|
return (double)rows / 20.0 + 1;
|
|
}
|
|
|
|
/*
|
|
Everything below are methods that we implement in ha_example.cc.
|
|
|
|
Most of these methods are not obligatory, skip them and
|
|
MySQL will treat them as not implemented
|
|
*/
|
|
/** @brief
|
|
We implement this in ha_example.cc; it's a required method.
|
|
*/
|
|
int open(const char *name, int mode, uint test_if_locked,
|
|
const dd::Table *table_def); // required
|
|
|
|
/** @brief
|
|
We implement this in ha_example.cc; it's a required method.
|
|
*/
|
|
int close(void); // required
|
|
|
|
/** @brief
|
|
We implement this in ha_example.cc. It's not an obligatory method;
|
|
skip it and and MySQL will treat it as not implemented.
|
|
*/
|
|
int write_row(uchar *buf);
|
|
|
|
/** @brief
|
|
We implement this in ha_example.cc. It's not an obligatory method;
|
|
skip it and and MySQL will treat it as not implemented.
|
|
*/
|
|
int update_row(const uchar *old_data, uchar *new_data);
|
|
|
|
/** @brief
|
|
We implement this in ha_example.cc. It's not an obligatory method;
|
|
skip it and and MySQL will treat it as not implemented.
|
|
*/
|
|
int delete_row(const uchar *buf);
|
|
|
|
/** @brief
|
|
We implement this in ha_example.cc. It's not an obligatory method;
|
|
skip it and and MySQL will treat it as not implemented.
|
|
*/
|
|
int index_read_map(uchar *buf, const uchar *key, key_part_map keypart_map,
|
|
enum ha_rkey_function find_flag);
|
|
|
|
/** @brief
|
|
We implement this in ha_example.cc. It's not an obligatory method;
|
|
skip it and and MySQL will treat it as not implemented.
|
|
*/
|
|
int index_next(uchar *buf);
|
|
|
|
/** @brief
|
|
We implement this in ha_example.cc. It's not an obligatory method;
|
|
skip it and and MySQL will treat it as not implemented.
|
|
*/
|
|
int index_prev(uchar *buf);
|
|
|
|
/** @brief
|
|
We implement this in ha_example.cc. It's not an obligatory method;
|
|
skip it and and MySQL will treat it as not implemented.
|
|
*/
|
|
int index_first(uchar *buf);
|
|
|
|
/** @brief
|
|
We implement this in ha_example.cc. It's not an obligatory method;
|
|
skip it and and MySQL will treat it as not implemented.
|
|
*/
|
|
int index_last(uchar *buf);
|
|
|
|
/** @brief
|
|
Unlike index_init(), rnd_init() can be called two consecutive times
|
|
without rnd_end() in between (it only makes sense if scan=1). In this
|
|
case, the second call should prepare for the new table scan (e.g if
|
|
rnd_init() allocates the cursor, the second call should position the
|
|
cursor to the start of the table; no need to deallocate and allocate
|
|
it again. This is a required method.
|
|
*/
|
|
int rnd_init(bool scan); // required
|
|
int rnd_end();
|
|
int rnd_next(uchar *buf); ///< required
|
|
int rnd_pos(uchar *buf, uchar *pos); ///< required
|
|
void position(const uchar *record); ///< required
|
|
int info(uint); ///< required
|
|
int extra(enum ha_extra_function operation);
|
|
int external_lock(THD *thd, int lock_type); ///< required
|
|
int delete_all_rows(void);
|
|
ha_rows records_in_range(uint inx, key_range *min_key, key_range *max_key);
|
|
int delete_table(const char *from, const dd::Table *table_def);
|
|
int rename_table(const char *from, const char *to,
|
|
const dd::Table *from_table_def, dd::Table *to_table_def);
|
|
int create(const char *name, TABLE *form, HA_CREATE_INFO *create_info,
|
|
dd::Table *table_def); ///< required
|
|
|
|
THR_LOCK_DATA **store_lock(THD *thd, THR_LOCK_DATA **to,
|
|
enum thr_lock_type lock_type); ///< required
|
|
};
|