polardbxengine/sql/dd/impl/cache/shared_dictionary_cache.h

369 lines
13 KiB
C++

/* Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#ifndef DD_CACHE__SHARED_DICTIONARY_CACHE_INCLUDED
#define DD_CACHE__SHARED_DICTIONARY_CACHE_INCLUDED
#include <stdio.h>
#include "sql/dd/impl/cache/shared_multi_map.h" // Shared_multi_map
#include "sql/dd/types/abstract_table.h"
#include "sql/dd/types/charset.h" // Charset
#include "sql/dd/types/collation.h" // Collation
#include "sql/dd/types/column_statistics.h" // Column_statistics
#include "sql/dd/types/event.h" // Event
#include "sql/dd/types/routine.h" // Routine
#include "sql/dd/types/schema.h" // Schema
#include "sql/dd/types/spatial_reference_system.h" // Spatial_reference_system
#include "sql/dd/types/table.h" // IWYU pragma: keep
#include "sql/dd/types/tablespace.h" // Tablespace
#include "sql/handler.h" // enum_tx_isolation
class THD;
namespace dd {
namespace cache {
/**
Shared dictionary cache containing several maps.
The dictionary cache is mainly a collection of shared maps for the
object types supported. The functions dispatch to the appropriate
map based on the key and object type parameter. Cache misses are handled
by retrieving the object from the storage adapter singleton.
The shared dictionary cache itself does not handle concurrency at this
outer layer. Concurrency is handled by the various instances of the
shared multi map.
*/
template <typename T>
class Cache_element;
class Shared_dictionary_cache {
private:
// Collation and character set cache sizes are chosen so that they can hold
// all collations and character sets built into the server. The spatial
// reference system cache size is chosen to hold a reasonable number of SRSs
// for normal server use.
static const size_t collation_capacity = 256;
static const size_t column_statistics_capacity = 32;
static const size_t charset_capacity = 64;
static const size_t event_capacity = 256;
static const size_t spatial_reference_system_capacity = 256;
/**
Maximum number of DD resource group objects to be kept in
cache. We use value of 32 which is a fairly reasonable upper limit
of resource group configurations that may be in use.
*/
static const size_t resource_group_capacity = 32;
Shared_multi_map<Abstract_table> m_abstract_table_map;
Shared_multi_map<Charset> m_charset_map;
Shared_multi_map<Collation> m_collation_map;
Shared_multi_map<Column_statistics> m_column_stat_map;
Shared_multi_map<Event> m_event_map;
Shared_multi_map<Resource_group> m_resource_group_map;
Shared_multi_map<Routine> m_routine_map;
Shared_multi_map<Schema> m_schema_map;
Shared_multi_map<Spatial_reference_system> m_spatial_reference_system_map;
Shared_multi_map<Tablespace> m_tablespace_map;
template <typename T>
struct Type_selector {}; // Dummy type to use for
// selecting map instance.
/**
Overloaded functions to use for selecting map instance based
on a key type. Const and non-const variants.
*/
Shared_multi_map<Abstract_table> *m_map(Type_selector<Abstract_table>) {
return &m_abstract_table_map;
}
Shared_multi_map<Charset> *m_map(Type_selector<Charset>) {
return &m_charset_map;
}
Shared_multi_map<Collation> *m_map(Type_selector<Collation>) {
return &m_collation_map;
}
Shared_multi_map<Column_statistics> *m_map(Type_selector<Column_statistics>) {
return &m_column_stat_map;
}
Shared_multi_map<Event> *m_map(Type_selector<Event>) { return &m_event_map; }
Shared_multi_map<Resource_group> *m_map(Type_selector<Resource_group>) {
return &m_resource_group_map;
}
Shared_multi_map<Routine> *m_map(Type_selector<Routine>) {
return &m_routine_map;
}
Shared_multi_map<Schema> *m_map(Type_selector<Schema>) {
return &m_schema_map;
}
Shared_multi_map<Spatial_reference_system> *m_map(
Type_selector<Spatial_reference_system>) {
return &m_spatial_reference_system_map;
}
Shared_multi_map<Tablespace> *m_map(Type_selector<Tablespace>) {
return &m_tablespace_map;
}
const Shared_multi_map<Abstract_table> *m_map(
Type_selector<Abstract_table>) const {
return &m_abstract_table_map;
}
const Shared_multi_map<Charset> *m_map(Type_selector<Charset>) const {
return &m_charset_map;
}
const Shared_multi_map<Collation> *m_map(Type_selector<Collation>) const {
return &m_collation_map;
}
const Shared_multi_map<Column_statistics> *m_map(
Type_selector<Column_statistics>) const {
return &m_column_stat_map;
}
const Shared_multi_map<Schema> *m_map(Type_selector<Schema>) const {
return &m_schema_map;
}
const Shared_multi_map<Spatial_reference_system> *m_map(
Type_selector<Spatial_reference_system>) const {
return &m_spatial_reference_system_map;
}
const Shared_multi_map<Tablespace> *m_map(Type_selector<Tablespace>) const {
return &m_tablespace_map;
}
const Shared_multi_map<Resource_group> *m_map(
Type_selector<Resource_group>) const {
return &m_resource_group_map;
}
/**
Template function to get a map instance.
To support generic code, the map instances are available through
template function instances. This allows looking up the
appropriate instance based on the key type. We must use
overloading to accomplish this (see above). Const and non-const
variants.
@tparam T Dictionary object type.
@return The shared map handling objects of type T.
*/
template <typename T>
Shared_multi_map<T> *m_map() {
return m_map(Type_selector<T>());
}
template <typename T>
const Shared_multi_map<T> *m_map() const {
return m_map(Type_selector<T>());
}
Shared_dictionary_cache() {}
public:
static Shared_dictionary_cache *instance();
// Set capacity of the shared maps.
static void init();
// Shutdown the shared maps.
static void shutdown();
// Reset the shared cache. Optionally keep the core DD table meta data.
static void reset(bool keep_dd_entities);
// Reset the table and tablespace partitions.
static bool reset_tables_and_tablespaces(THD *thd);
/**
Check if an element with the given key is available.
@param key Key to check for presence.
@retval true The key exist.
@retval false The key does not exist.
*/
template <typename K, typename T>
bool available(const K &key) {
return m_map<T>()->available(key);
}
/**
Get an element from the cache, given the key.
The operation retrieves an element by one of its keys from the cache
(possibly involving a cache miss, which will need the thd to handle the
miss) and returns it through the parameter. If there is no element for
the given key, NULL is returned. The cache owns the returned element,
i.e., the caller must not delete it. After using the element, release()
must be called for every element received via get(). The reference
counter for the element is incremented if the element is retrieved from
the shared cache.
@tparam K Key type.
@tparam T Dictionary object type.
@param thd Thread context.
@param key Key to use for looking up the object.
@param [out] element Element pointer, if present. NULL if not present.
@retval false No error.
@retval true Error (from handling a cache miss).
*/
template <typename K, typename T>
bool get(THD *thd, const K &key, Cache_element<T> **element);
/**
Read an object directly from disk, given the key.
The operation retrieves an object by one of its keys from the persistent
dd tables. The object is returned without being added to the shared
cache. The object returned is owned by the caller, who thus becomes
responsible of deleting it.
@tparam K Key type.
@tparam T Dictionary object type.
@param thd Thread context.
@param key Key to use for looking up the object.
@param isolation Isolation level to use.
@param [out] object Object pointer, if present. NULL if not present.
@retval false No error.
@retval true Error (from reading from the DD tables).
*/
template <typename K, typename T>
bool get_uncached(THD *thd, const K &key, enum_tx_isolation isolation,
const T **object) const;
/**
Add an object to the shared cache.
The object may not be present already. The object is added to the cache,
the use counter of its element wrapper in incremented, and the element
pointer is returned. The user must release the object afterwards. The
cache is the owner of the returned element and object.
@tparam T Dictionary object type.
@param object Object pointer to be added. May not be NULL.
@param element Element pointer, if present. NULL if not present.
*/
template <typename T>
void put(const T *object, Cache_element<T> **element);
/**
Release an element used by a client.
The element must be present and in use. If the element becomes unused,
it is added to the free list, which is then rectified to enforce
its capacity constraints.
@tparam T Dictionary object type.
@param e Element pointer.
*/
template <typename T>
void release(Cache_element<T> *e) {
m_map<T>()->release(e);
}
/**
Delete an element from the cache.
This function will remove the element from the cache and delete the
object pointed to. This means that all keys associated with the element
will be removed from the maps, and the cache element wrapper will be
deleted. The object may not be accessed after calling this function.
@tparam T Dictionary object type.
@param element Element pointer.
*/
template <typename T>
void drop(Cache_element<T> *element) {
m_map<T>()->drop(element);
}
/**
Delete an element corresponding to the key from the cache if exists.
This function will find the element corresponding to the key if
it exists. After that it will remove the element from the cache
i.e. all maps, and delete the object pointed to. This means that
all keys associated with the element will be removed from the maps,
and the cache element wrapper will be deleted.
@tparam K Key type.
@tparam T Dictionary object type.
@param key Key to be checked.
*/
template <typename K, typename T>
void drop_if_present(const K &key) {
m_map<T>()->drop_if_present(key);
}
/**
Replace the object and re-create the keys for an element.
The operation removes the current keys from the internal maps in the
cache, assigns the new object to the element, generates new keys based
on the new object, and inserts the new keys into the internal maps in the
cache. The old object is deleted.
@tparam T Dictionary object type.
@param element Element pointer.
@param object New object to replace the old one.
*/
template <typename T>
void replace(Cache_element<T> *element, const T *object) {
m_map<T>()->replace(element, object);
}
/**
Debug dump of a shared cache partition to stderr.
@tparam T Dictionary object type.
*/
template <typename T>
void dump() const {
#ifndef DBUG_OFF
fprintf(stderr, "================================\n");
fprintf(stderr, "Shared dictionary cache\n");
m_map<T>()->dump();
fprintf(stderr, "================================\n");
#endif
}
};
} // namespace cache
} // namespace dd
#endif // DD_CACHE__SHARED_DICTIONARY_CACHE_INCLUDED