/* Copyright (c) 2007, 2014, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* * Update on master wait for update on slave * */ #include #include #include #include #include #include struct Xxx { Ndb *ndb; const NdbDictionary::Table *table; Uint32 pk_col; Uint32 col; }; struct XxxR { Uint32 pk_val; Uint32 val; struct timeval start_time; Uint32 latency; }; static int prepare_master_or_slave(Ndb &myNdb, const char* table, const char* pk, Uint32 pk_val, const char* col, struct Xxx &xxx, struct XxxR &xxxr); static void run_master_update(struct Xxx &xxx, struct XxxR &xxxr); static void run_slave_wait(struct Xxx &xxx, struct XxxR &xxxr); #define PRINT_ERROR(code,msg) \ g_err << "Error in " << __FILE__ << ", line: " << __LINE__ \ << ", code: " << code \ << ", msg: " << msg << ".\n" #define APIERROR(error) { \ PRINT_ERROR((error).code, (error).message); \ exit(-1); } int main(int argc, char** argv) { // ndb_init must be called first ndb_init(); if (argc != 8) { ndbout << "Arguments are .\n"; exit(-1); } { const char *opt_connectstring1 = argv[1]; const char *opt_connectstring2 = argv[2]; const char *opt_db = argv[3]; const char *opt_table = argv[4]; const char *opt_pk = argv[5]; const Uint32 opt_pk_val = atoi(argv[6]); const char *opt_col = argv[7]; // Object representing the cluster 1 Ndb_cluster_connection cluster1_connection(opt_connectstring1); // Object representing the cluster 2 Ndb_cluster_connection cluster2_connection(opt_connectstring2); // connect cluster 1 and run application // Connect to cluster 1 management server (ndb_mgmd) if (cluster1_connection.connect(4 /* retries */, 5 /* delay between retries */, 1 /* verbose */)) { g_err << "Cluster 1 management server was not ready within 30 secs.\n"; exit(-1); } // Optionally connect and wait for the storage nodes (ndbd's) if (cluster1_connection.wait_until_ready(30,0) < 0) { g_err << "Cluster 1 was not ready within 30 secs.\n"; exit(-1); } // connect cluster 2 and run application // Connect to cluster management server (ndb_mgmd) if (cluster2_connection.connect(4 /* retries */, 5 /* delay between retries */, 1 /* verbose */)) { g_err << "Cluster 2 management server was not ready within 30 secs.\n"; exit(-1); } // Optionally connect and wait for the storage nodes (ndbd's) if (cluster2_connection.wait_until_ready(30,0) < 0) { g_err << "Cluster 2 was not ready within 30 secs.\n"; exit(-1); } // Object representing the database Ndb myNdb1(&cluster1_connection, opt_db); Ndb myNdb2(&cluster2_connection, opt_db); // struct Xxx xxx1; struct Xxx xxx2; struct XxxR xxxr; prepare_master_or_slave(myNdb1, opt_table, opt_pk, opt_pk_val, opt_col, xxx1, xxxr); prepare_master_or_slave(myNdb2, opt_table, opt_pk, opt_pk_val, opt_col, xxx2, xxxr); while (1) { // run the application code run_master_update(xxx1, xxxr); run_slave_wait(xxx2, xxxr); ndbout << "latency: " << xxxr.latency << endl; } } // Note: all connections must have been destroyed before calling ndb_end() ndb_end(0); return 0; } static int prepare_master_or_slave(Ndb &myNdb, const char* table, const char* pk, Uint32 pk_val, const char* col, struct Xxx &xxx, struct XxxR &xxxr) { if (myNdb.init()) APIERROR(myNdb.getNdbError()); const NdbDictionary::Dictionary* myDict = myNdb.getDictionary(); const NdbDictionary::Table *myTable = myDict->getTable(table); if (myTable == NULL) APIERROR(myDict->getNdbError()); const NdbDictionary::Column *myPkCol = myTable->getColumn(pk); if (myPkCol == NULL) APIERROR(myDict->getNdbError()); if (myPkCol->getType() != NdbDictionary::Column::Unsigned) { PRINT_ERROR(0, "Primary key column not of type unsigned"); exit(-1); } const NdbDictionary::Column *myCol = myTable->getColumn(col); if (myCol == NULL) APIERROR(myDict->getNdbError()); if (myCol->getType() != NdbDictionary::Column::Unsigned) { PRINT_ERROR(0, "Update column not of type unsigned"); exit(-1); } xxx.ndb = &myNdb; xxx.table = myTable; xxx.pk_col = myPkCol->getColumnNo(); xxx.col = myCol->getColumnNo(); xxxr.pk_val = pk_val; return 0; } static void run_master_update(struct Xxx &xxx, struct XxxR &xxxr) { Ndb *ndb = xxx.ndb; const NdbDictionary::Table *myTable = xxx.table; int retry_sleep= 10; /* 10 milliseconds */ int retries= 100; while (1) { Uint32 val; NdbTransaction *trans = ndb->startTransaction(); if (trans == NULL) goto err; { NdbOperation *op = trans->getNdbOperation(myTable); if (op == NULL) APIERROR(trans->getNdbError()); op->readTupleExclusive(); op->equal(xxx.pk_col, xxxr.pk_val); op->getValue(xxx.col, (char *)&val); } if (trans->execute(NdbTransaction::NoCommit)) goto err; //fprintf(stderr, "read %u\n", val); xxxr.val = val + 1; { NdbOperation *op = trans->getNdbOperation(myTable); if (op == NULL) APIERROR(trans->getNdbError()); op->updateTuple(); op->equal(xxx.pk_col, xxxr.pk_val); op->setValue(xxx.col, xxxr.val); } if (trans->execute(NdbTransaction::Commit)) goto err; ndb->closeTransaction(trans); //fprintf(stderr, "updated to %u\n", xxxr.val); break; err: const NdbError this_error= trans ? trans->getNdbError() : ndb->getNdbError(); if (this_error.status == NdbError::TemporaryError) { if (retries--) { if (trans) ndb->closeTransaction(trans); NdbSleep_MilliSleep(retry_sleep); continue; // retry } } if (trans) ndb->closeTransaction(trans); APIERROR(this_error); } /* update done start timer */ gettimeofday(&xxxr.start_time, 0); } static void run_slave_wait(struct Xxx &xxx, struct XxxR &xxxr) { struct timeval old_end_time = xxxr.start_time, end_time; Ndb *ndb = xxx.ndb; const NdbDictionary::Table *myTable = xxx.table; int retry_sleep= 10; /* 10 milliseconds */ int retries= 100; while (1) { Uint32 val; NdbTransaction *trans = ndb->startTransaction(); if (trans == NULL) goto err; { NdbOperation *op = trans->getNdbOperation(myTable); if (op == NULL) APIERROR(trans->getNdbError()); op->readTuple(); op->equal(xxx.pk_col, xxxr.pk_val); op->getValue(xxx.col, (char *)&val); if (trans->execute(NdbTransaction::Commit)) goto err; } /* read done, check time of read */ gettimeofday(&end_time, 0); ndb->closeTransaction(trans); //fprintf(stderr, "read %u waiting for %u\n", val, xxxr.val); if (xxxr.val != val) { /* expected value not received yet */ retries = 100; NdbSleep_MilliSleep(retry_sleep); old_end_time = end_time; continue; } break; err: const NdbError this_error= trans ? trans->getNdbError() : ndb->getNdbError(); if (this_error.status == NdbError::TemporaryError) { if (retries--) { if (trans) ndb->closeTransaction(trans); NdbSleep_MilliSleep(retry_sleep); continue; // retry } } if (trans) ndb->closeTransaction(trans); APIERROR(this_error); } Int64 elapsed_usec1 = ((Int64)end_time.tv_sec - (Int64)xxxr.start_time.tv_sec)*1000*1000 + ((Int64)end_time.tv_usec - (Int64)xxxr.start_time.tv_usec); Int64 elapsed_usec2 = ((Int64)end_time.tv_sec - (Int64)old_end_time.tv_sec)*1000*1000 + ((Int64)end_time.tv_usec - (Int64)old_end_time.tv_usec); xxxr.latency = ((elapsed_usec1 - elapsed_usec2/2)+999)/1000; }