/* Copyright (c) 2004, 2018, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include struct Parameter { const char * name; unsigned value; unsigned min; unsigned max; }; #define P_OPER 0 #define P_RANGE 1 #define P_ROWS 2 #define P_LOOPS 3 #define P_CREATE 4 #define P_LOAD 5 #define P_MAX 6 /** * operation * 0 - serial pk * 1 - batch pk * 2 - serial uniq * 3 - batch uniq * 4 - index eq * 5 - range scan * 6 - ordered range scan * 7 - interpreted scan */ static const char * g_ops[] = { "serial pk", "batch pk", "serial uniq index access", "batch uniq index access", "index eq-bound", "index range", "index ordered", "interpreted scan" }; #define P_OP_TYPES 8 static Uint64 g_times[P_OP_TYPES]; static Parameter g_paramters[] = { { "operation", 0, 0, 6 }, // 0 { "range", 1000, 1, UINT_MAX },// 1 no of rows to read { "size", 1000000, 1, UINT_MAX },// 2 rows in tables { "iterations", 3, 1, UINT_MAX },// 3 { "create_drop", 0, 0, 1 }, // 4 { "data", 0, 0, 1 } // 5 }; static Ndb* g_ndb = 0; static const NdbDictionary::Table * g_tab; static const NdbDictionary::Index * g_i_unique; static const NdbDictionary::Index * g_i_ordered; static char g_table[256]; static char g_unique[256]; static char g_ordered[256]; int create_table(); int load_table(); int run_read(); int clear_table(); int drop_table(); void print_result(); int main(int argc, const char** argv){ ndb_init(); int verbose = 1; int optind = 0; struct getargs args[1+P_MAX] = { { "verbose", 'v', arg_flag, &verbose, "Print verbose status", "verbose" } }; const int num_args = 1 + P_MAX; int i; for(i = 0; iinit() != 0){ g_err << "init() failed" << endl; goto error; } if(g_ndb->waitUntilReady() != 0){ g_err << "Wait until ready failed" << endl; goto error; } for(i = optind; igetDictionary(); require(dict); if(g_paramters[P_CREATE].value){ const NdbDictionary::Table * pTab = NDBT_Tables::getTable(g_table); require(pTab); NdbDictionary::Table copy = * pTab; copy.setLogging(false); if(dict->createTable(copy) != 0){ g_err << "Failed to create table: " << g_table << endl; return -1; } NdbDictionary::Index x(g_ordered); x.setTable(g_table); x.setType(NdbDictionary::Index::OrderedIndex); x.setLogging(false); for (unsigned k = 0; k < (unsigned)copy.getNoOfColumns(); k++){ if(copy.getColumn(k)->getPrimaryKey()){ x.addColumn(copy.getColumn(k)->getName()); } } if(dict->createIndex(x) != 0){ g_err << "Failed to create index: " << endl; return -1; } x.setName(g_unique); x.setType(NdbDictionary::Index::UniqueHashIndex); if(dict->createIndex(x) != 0){ g_err << "Failed to create index: " << endl; return -1; } } g_tab = dict->getTable(g_table); g_i_unique = dict->getIndex(g_unique, g_table); g_i_ordered = dict->getIndex(g_ordered, g_table); require(g_tab); require(g_i_unique); require(g_i_ordered); return 0; } int drop_table(){ if(!g_paramters[P_CREATE].value) return 0; if(g_ndb->getDictionary()->dropTable(g_tab->getName()) != 0){ g_err << "Failed to drop table: " << g_tab->getName() << endl; return -1; } g_tab = 0; return 0; } int load_table(){ if(!g_paramters[P_LOAD].value) return 0; int rows = g_paramters[P_ROWS].value; HugoTransactions hugoTrans(* g_tab); if (hugoTrans.loadTable(g_ndb, rows)){ g_err.println("Failed to load %s with %d rows", g_tab->getName(), rows); return -1; } return 0; } int clear_table(){ if(!g_paramters[P_LOAD].value) return 0; int rows = g_paramters[P_ROWS].value; UtilTransactions utilTrans(* g_tab); if (utilTrans.clearTable(g_ndb, rows) != 0){ g_err.println("Failed to clear table %s", g_tab->getName()); return -1; } return 0; } inline void err(NdbError e){ ndbout << e << endl; } int run_read(){ //int iter = g_paramters[P_LOOPS].value; Uint64 start1, stop; //int sum_time= 0; const Uint32 rows = g_paramters[P_ROWS].value; const Uint32 range = g_paramters[P_RANGE].value; start1 = NdbTick_CurrentMillisecond(); NdbConnection * pTrans = g_ndb->startTransaction(); if(!pTrans){ g_err << "Failed to start transaction" << endl; err(g_ndb->getNdbError()); return -1; } NdbOperation * pOp = nullptr; NdbScanOperation * pSp = nullptr; NdbIndexScanOperation * pIp; Uint32 start_row = rand() % (rows - range); Uint32 stop_row = start_row + range; /** * 0 - serial pk * 1 - batch pk * 2 - serial uniq * 3 - batch uniq * 4 - index eq * 5 - range scan * 6 - interpreted scan */ int check = 0; void* res = (void*)~0; const Uint32 pk = 0; Uint32 cnt = 0; for(; start_row < stop_row; start_row++){ switch(g_paramters[P_OPER].value){ case 0: pOp = pTrans->getNdbOperation(g_table); check = pOp->readTuple(); check = pOp->equal(pk, start_row); break; case 1: for(; start_rowgetNdbOperation(g_table); check = pOp->readTuple(); check = pOp->equal(pk, start_row); for(int j = 0; jgetNoOfColumns(); j++){ res = pOp->getValue(j); require(res); } } break; case 2: pOp = pTrans->getNdbIndexOperation(g_unique, g_table); check = pOp->readTuple(); check = pOp->equal(pk, start_row); break; case 3: for(; start_rowgetNdbIndexOperation(g_unique, g_table); check = pOp->readTuple(); check = pOp->equal(pk, start_row); for(int j = 0; jgetNoOfColumns(); j++){ res = pOp->getValue(j); require(res); } } break; case 4: pOp = pSp = pIp = pTrans->getNdbIndexScanOperation(g_ordered,g_table); pIp->readTuples(NdbScanOperation::LM_CommittedRead, 0, 0); check = pIp->setBound(pk, NdbIndexScanOperation::BoundEQ, &start_row); break; case 5: pOp = pSp = pIp = pTrans->getNdbIndexScanOperation(g_ordered,g_table); pIp->readTuples(NdbScanOperation::LM_CommittedRead, 0, 0); check = pIp->setBound(pk, NdbIndexScanOperation::BoundLE, &start_row); check = pIp->setBound(pk, NdbIndexScanOperation::BoundGT, &stop_row); start_row = stop_row; break; case 6: pOp = pSp = pIp = pTrans->getNdbIndexScanOperation(g_ordered,g_table); pIp->readTuples(NdbScanOperation::LM_CommittedRead, 0, 0, true); check = pIp->setBound(pk, NdbIndexScanOperation::BoundLE, &start_row); check = pIp->setBound(pk, NdbIndexScanOperation::BoundGT, &stop_row); start_row = stop_row; break; case 7: pOp = pSp = pTrans->getNdbScanOperation(g_table); pSp->readTuples(NdbScanOperation::LM_CommittedRead, 0, 0); NdbScanFilter filter(pOp) ; filter.begin(NdbScanFilter::AND); filter.ge(pk, start_row); filter.lt(pk, stop_row); filter.end(); start_row = stop_row; break; } require(res); if(check != 0){ ndbout << pOp->getNdbError() << endl; ndbout << pTrans->getNdbError() << endl; } require(check == 0); for(int j = 0; jgetNoOfColumns(); j++){ res = pOp->getValue(j); require(res); } check = pTrans->execute(NoCommit); if(check != 0){ ndbout << pTrans->getNdbError() << endl; } require(check == 0); if(g_paramters[P_OPER].value >= 4){ while((check = pSp->nextResult(true)) == 0){ cnt++; } if(check == -1){ err(pTrans->getNdbError()); return -1; } require(check == 1); pSp->close(); } } require(g_paramters[P_OPER].value < 4 || (cnt == range)); pTrans->close(); stop = NdbTick_CurrentMillisecond(); g_times[g_paramters[P_OPER].value] += (stop - start1); return 0; } void print_result(){ int tmp = 1; tmp *= g_paramters[P_RANGE].value; tmp *= g_paramters[P_LOOPS].value; for(int i = 0; i