/* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef MY_BIT_INCLUDED #define MY_BIT_INCLUDED /** @file include/my_bit.h Some useful bit functions. */ #include #include "my_config.h" #include "my_inttypes.h" #include "my_macros.h" extern const char _my_bits_nbits[256]; extern const uchar _my_bits_reverse_table[256]; /* Find smallest X in 2^X >= value This can be used to divide a number with value by doing a shift instead */ static inline uint my_bit_log2(ulong value) { uint bit; for (bit = 0; value > 1; value >>= 1, bit++) ; return bit; } static inline uint my_count_bits(ulonglong v) { #if SIZEOF_LONG_LONG > 4 /* The following code is a bit faster on 16 bit machines than if we would only shift v */ ulong v2 = (ulong)(v >> 32); return (uint)(uchar)( _my_bits_nbits[(uchar)v] + _my_bits_nbits[(uchar)(v >> 8)] + _my_bits_nbits[(uchar)(v >> 16)] + _my_bits_nbits[(uchar)(v >> 24)] + _my_bits_nbits[(uchar)(v2)] + _my_bits_nbits[(uchar)(v2 >> 8)] + _my_bits_nbits[(uchar)(v2 >> 16)] + _my_bits_nbits[(uchar)(v2 >> 24)]); #else return (uint)(uchar)( _my_bits_nbits[(uchar)v] + _my_bits_nbits[(uchar)(v >> 8)] + _my_bits_nbits[(uchar)(v >> 16)] + _my_bits_nbits[(uchar)(v >> 24)]); #endif } static inline uint my_count_bits_uint32(uint32 v) { return (uint)(uchar)( _my_bits_nbits[(uchar)v] + _my_bits_nbits[(uchar)(v >> 8)] + _my_bits_nbits[(uchar)(v >> 16)] + _my_bits_nbits[(uchar)(v >> 24)]); } /* Next highest power of two SYNOPSIS my_round_up_to_next_power() v Value to check RETURN Next or equal power of 2 Note: 0 will return 0 NOTES Algorithm by Sean Anderson, according to: http://graphics.stanford.edu/~seander/bithacks.html (Orignal code public domain) Comments shows how this works with 01100000000000000000000000001011 */ static inline uint32 my_round_up_to_next_power(uint32 v) { v--; /* 01100000000000000000000000001010 */ v |= v >> 1; /* 01110000000000000000000000001111 */ v |= v >> 2; /* 01111100000000000000000000001111 */ v |= v >> 4; /* 01111111110000000000000000001111 */ v |= v >> 8; /* 01111111111111111100000000001111 */ v |= v >> 16; /* 01111111111111111111111111111111 */ return v + 1; /* 10000000000000000000000000000000 */ } static inline uint32 my_clear_highest_bit(uint32 v) { uint32 w = v >> 1; w |= w >> 1; w |= w >> 2; w |= w >> 4; w |= w >> 8; w |= w >> 16; return v & w; } static inline uint32 my_reverse_bits(uint32 key) { return (_my_bits_reverse_table[key & 255] << 24) | (_my_bits_reverse_table[(key >> 8) & 255] << 16) | (_my_bits_reverse_table[(key >> 16) & 255] << 8) | _my_bits_reverse_table[(key >> 24)]; } /** Determine if a single bit is set among some bits. @tparam IntType an integer type @param bits the bits to examine @retval true if bits equals to a power of 2 @retval false otherwise */ template constexpr bool is_single_bit(IntType bits) { /* Proof of correctness: (1) is_single_bit(0)==false is left as an exercise to the reader. (2) is_single_bit(1)==true is left as an exercise to the reader. (3) is_single_bit(1<<(N+1))==true because the most significant set bit in (bits - 1) would be 1<=0 and m!=0 and the least significant bit that is set in m is greater than 1<