/***************************************************************************** Copyright (c) 2012, Oracle and/or its affiliates. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************/ /** @file include/ut0counter.h Counter utility class Created 2012/04/12 by Sunny Bains *******************************************************/ #ifndef UT0COUNTER_H #define UT0COUNTER_H #include "my_dbug.h" #include #include #include #include /** CPU cache line size */ #ifndef CACHE_LINE_SIZE #define CACHE_LINE_SIZE 64 #endif /** Default number of slots to use in ib_counter_t */ #define IB_N_SLOTS 64 #ifdef __WIN__ #define get_curr_thread_id() GetCurrentThreadId() #else #define get_curr_thread_id() pthread_self() #endif #define UT_ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) /** Get the offset into the counter array. */ template struct generic_indexer_t { /** Default constructor/destructor should be OK. */ /** @return offset within m_counter */ size_t offset(size_t index) const { return (((index % N) + 1) * (CACHE_LINE_SIZE / sizeof(Type))); } }; #ifdef HAVE_SCHED_GETCPU //#include // Including this causes problems with EMPTY symbol #include // Include this instead /** Use the cpu id to index into the counter array. If it fails then use the thread id. */ template struct get_sched_indexer_t : public generic_indexer_t { /** Default constructor/destructor should be OK. */ /* @return result from sched_getcpu(), the thread id if it fails. */ size_t get_rnd_index() const { size_t cpu = sched_getcpu(); if (cpu == (size_t)-1) { cpu = get_curr_thread_id(); } return (cpu); } }; #endif /* HAVE_SCHED_GETCPU */ /** Use the thread id to index into the counter array. */ template struct thread_id_indexer_t : public generic_indexer_t { /** Default constructor/destructor should are OK. */ /* @return a random number, currently we use the thread id. Where thread id is represented as a pointer, it may not work as effectively. */ size_t get_rnd_index() const { return get_curr_thread_id(); } }; /** For counters wher N=1 */ template struct single_indexer_t { /** Default constructor/destructor should are OK. */ /** @return offset within m_counter */ size_t offset(size_t index) const { DBUG_ASSERT(N == 1); return ((CACHE_LINE_SIZE / sizeof(Type))); } /* @return 1 */ size_t get_rnd_index() const { DBUG_ASSERT(N == 1); return (1); } }; /** Class for using fuzzy counters. The counter is not protected by any mutex and the results are not guaranteed to be 100% accurate but close enough. Creates an array of counters and separates each element by the CACHE_LINE_SIZE bytes */ template class Indexer = thread_id_indexer_t> class ib_counter_t { public: ib_counter_t() { memset(m_counter, 0x0, sizeof(m_counter)); } ~ib_counter_t() { DBUG_ASSERT(validate()); } bool validate() { #ifdef UNIV_DEBUG size_t n = (CACHE_LINE_SIZE / sizeof(Type)); /* Check that we aren't writing outside our defined bounds. */ for (size_t i = 0; i < UT_ARRAY_SIZE(m_counter); i += n) { for (size_t j = 1; j < n - 1; ++j) { DBUG_ASSERT(m_counter[i + j] == 0); } } #endif /* UNIV_DEBUG */ return (true); } /** If you can't use a good index id. Increment by 1. */ void inc() { add(1); } /** If you can't use a good index id. * @param n - is the amount to increment */ void add(Type n) { size_t i = m_policy.offset(m_policy.get_rnd_index()); DBUG_ASSERT(i < UT_ARRAY_SIZE(m_counter)); m_counter[i] += n; } /** Use this if you can use a unique indentifier, saves a call to get_rnd_index(). @param i - index into a slot @param n - amount to increment */ void add(size_t index, Type n) { size_t i = m_policy.offset(index); DBUG_ASSERT(i < UT_ARRAY_SIZE(m_counter)); m_counter[i] += n; } /** If you can't use a good index id. Decrement by 1. */ void dec() { sub(1); } /** If you can't use a good index id. * @param - n is the amount to decrement */ void sub(Type n) { size_t i = m_policy.offset(m_policy.get_rnd_index()); DBUG_ASSERT(i < UT_ARRAY_SIZE(m_counter)); m_counter[i] -= n; } /** Use this if you can use a unique indentifier, saves a call to get_rnd_index(). @param i - index into a slot @param n - amount to decrement */ void sub(size_t index, Type n) { size_t i = m_policy.offset(index); DBUG_ASSERT(i < UT_ARRAY_SIZE(m_counter)); m_counter[i] -= n; } /* @return total value - not 100% accurate, since it is not atomic. */ operator Type() const { Type total = 0; for (size_t i = 0; i < N; ++i) { total += m_counter[m_policy.offset(i)]; } return (total); } private: /** Indexer into the array */ Indexer m_policy; /** Slot 0 is unused. */ Type m_counter[(N + 1) * (CACHE_LINE_SIZE / sizeof(Type))]; }; /** Sharded atomic counter. */ namespace Counter { using Type = uint64_t; using N = std::atomic; static_assert(CACHE_LINE_SIZE >= sizeof(N), "Atomic counter size > CACHE_LINE_SIZE"); using Pad = char[CACHE_LINE_SIZE - sizeof(N)]; /** Counter shard. */ struct Shard { /** Separate on cache line. */ Pad m_pad; /** Sharded counter. */ N m_n{}; }; using Shards = std::array; using Function = std::function; /** Increment the counter of a shard by 1. @param[in,out] shards Sharded counter to increment. @param[in] id Shard key. */ inline void inc(Shards &shards, size_t id) { shards[id % shards.size()].m_n.fetch_add(1, std::memory_order_relaxed); } /** Increment the counter for a shard by n. @param[in,out] shards Sharded counter to increment. @param[in] id Shard key. @param[in] n Number to add. */ inline void add(Shards &shards, size_t id, size_t n) { shards[id % shards.size()].m_n.fetch_add(n, std::memory_order_relaxed); } /** Get the counter value for a shard. @param[in,out] shards Sharded counter to increment. @param[in] id Shard key. */ inline Type get(const Shards &shards, size_t id) { return (shards[id % shards.size()].m_n.load(std::memory_order_relaxed)); } /** Iterate over the shards. @param[in] shards Shards to iterate over @param[in] f Callback function @return total value. */ inline void for_each(const Shards &shards, Function &&f) { for (const auto &shard : shards) { f(shard.m_n); } } /** Get the total value of all shards. @param[in] shards Shards to sum. @return total value. */ inline Type total(const Shards &shards) { Type n = 0; for_each(shards, [&](const Type count) { n += count; }); return (n); } /** Clear the counter - reset to 0. @param[in,out] shards Shards to clear. */ inline void clear(Shards &shards) { for (auto &shard : shards) { shard.m_n.store(0, std::memory_order_relaxed); } } } // namespace Counter #endif /* UT0COUNTER_H */