/***************************************************************************** Copyright (c) 2014, 2019, Oracle and/or its affiliates. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *****************************************************************************/ /** @file include/ut0new.h Instrumented memory allocator. Created May 26, 2014 Vasil Dimov *******************************************************/ /** Dynamic memory allocation within InnoDB guidelines. All dynamic (heap) memory allocations (malloc(3), strdup(3), etc, "new", various std:: containers that allocate memory internally), that are done within InnoDB are instrumented. This means that InnoDB uses a custom set of functions for allocating memory, rather than calling e.g. "new" directly. Here follows a cheat sheet on what InnoDB functions to use whenever a standard one would have been used. Creating new objects with "new": -------------------------------- Standard: new expression or new(std::nothrow) expression InnoDB, default instrumentation: UT_NEW_NOKEY(expression) InnoDB, custom instrumentation, preferred: UT_NEW(expression, key) Destroying objects, created with "new": --------------------------------------- Standard: delete ptr InnoDB: UT_DELETE(ptr) Creating new arrays with "new[]": --------------------------------- Standard: new type[num] or new(std::nothrow) type[num] InnoDB, default instrumentation: UT_NEW_ARRAY_NOKEY(type, num) InnoDB, custom instrumentation, preferred: UT_NEW_ARRAY(type, num, key) Destroying arrays, created with "new[]": ---------------------------------------- Standard: delete[] ptr InnoDB: UT_DELETE_ARRAY(ptr) Declaring a type with a std:: container, e.g. std::vector: ---------------------------------------------------------- Standard: std::vector InnoDB: std::vector > Declaring objects of some std:: type: ------------------------------------- Standard: std::vector v InnoDB, default instrumentation: std::vector > v InnoDB, custom instrumentation, preferred: std::vector > v(ut_allocator(key)) Raw block allocation (as usual in C++, consider whether using "new" would not be more appropriate): ------------------------------------------------------------------------- Standard: malloc(num) InnoDB, default instrumentation: ut_malloc_nokey(num) InnoDB, custom instrumentation, preferred: ut_malloc(num, key) Raw block resize: ----------------- Standard: realloc(ptr, new_size) InnoDB: ut_realloc(ptr, new_size) Raw block deallocation: ----------------------- Standard: free(ptr) InnoDB: ut_free(ptr) Note: the expression passed to UT_NEW() or UT_NEW_NOKEY() must always end with (), thus: Standard: new int InnoDB: UT_NEW_NOKEY(int()) */ #ifndef ut0new_h #define ut0new_h #include #include #include #include #include #include #include #include /* std::is_trivially_default_constructible */ #include "my_basename.h" #include "mysql/psi/mysql_memory.h" #include "mysql/psi/psi_base.h" #include "mysql/psi/psi_memory.h" #include "os0proc.h" #include "os0thread.h" #include "univ.i" #include "ut0byte.h" /* ut_align */ #include "ut0counter.h" /* INNOBASE_CACHE_LINE_SIZE */ #include "ut0ut.h" #define OUT_OF_MEMORY_MSG \ "Check if you should increase the swap file or ulimits of your" \ " operating system. Note that on most 32-bit computers the process" \ " memory space is limited to 2 GB or 4 GB." /** Maximum number of retries to allocate memory. */ extern const size_t alloc_max_retries; /** Keys for registering allocations with performance schema. Pointers to these variables are supplied to PFS code via the pfs_info[] array and the PFS code initializes them via PSI_MEMORY_CALL(register_memory)(). mem_key_other and mem_key_std are special in the following way. * If the caller has not provided a key and the file name of the caller is unknown, then mem_key_std will be used. This happens only when called from within std::* containers. * If the caller has not provided a key and the file name of the caller is known, but is not amongst the predefined names (see ut_new_boot()) then mem_key_other will be used. Generally this should not happen and if it happens then that means that the list of predefined names must be extended. Keep this list alphabetically sorted. */ extern PSI_memory_key mem_key_ahi; extern PSI_memory_key mem_key_archive; extern PSI_memory_key mem_key_buf_buf_pool; extern PSI_memory_key mem_key_buf_stat_per_index_t; /** Memory key for clone */ extern PSI_memory_key mem_key_clone; extern PSI_memory_key mem_key_dict_stats_bg_recalc_pool_t; extern PSI_memory_key mem_key_dict_stats_index_map_t; extern PSI_memory_key mem_key_dict_stats_n_diff_on_level; extern PSI_memory_key mem_key_redo_log_archive_queue_element; extern PSI_memory_key mem_key_other; extern PSI_memory_key mem_key_partitioning; extern PSI_memory_key mem_key_row_cleanout; extern PSI_memory_key mem_key_row_log_buf; extern PSI_memory_key mem_key_row_merge_sort; extern PSI_memory_key mem_key_std; extern PSI_memory_key mem_key_trx_sys_t_rw_trx_ids; extern PSI_memory_key mem_key_undo_spaces; extern PSI_memory_key mem_key_ut_lock_free_hash_t; /* Please obey alphabetical order in the definitions above. */ /** Setup the internal objects needed for UT_NEW() to operate. This must be called before the first call to UT_NEW(). */ void ut_new_boot(); /** Setup the internal objects needed for UT_NEW() to operate. This must be called before the first call to UT_NEW(). This version of function might be called several times and it will simply skip all calls except the first one, during which the initialization will happen. */ void ut_new_boot_safe(); #ifdef UNIV_PFS_MEMORY /** List of filenames that allocate memory and are instrumented via PFS. */ static constexpr const char *auto_event_names[] = { /* Keep this list alphabetically sorted. */ "api0api", "api0misc", "btr0btr", "btr0bulk", "btr0cur", "btr0pcur", "btr0sea", "btr0types", "buf", "buf0buddy", "buf0buf", "buf0checksum", "buf0dblwr", "buf0dump", "buf0flu", "buf0lru", "buf0rea", "buf0stats", "buf0types", "checksum", "crc32", "create", "data0data", "data0type", "data0types", "db0err", "dict", "dict0boot", "dict0crea", "dict0dd", "dict0dict", "dict0load", "dict0mem", "dict0priv", "dict0sdi", "dict0stats", "dict0stats_bg", "dict0types", "dyn0buf", "dyn0types", "eval0eval", "eval0proc", "fil0fil", "fil0types", "file", "fsp0file", "fsp0fsp", "fsp0space", "fsp0sysspace", "fsp0types", "fts0ast", "fts0blex", "fts0config", "fts0fts", "fts0opt", "fts0pars", "fts0plugin", "fts0priv", "fts0que", "fts0sql", "fts0tlex", "fts0tokenize", "fts0types", "fts0vlc", "fut0fut", "fut0lst", "gis0geo", "gis0rtree", "gis0sea", "gis0type", "ha0ha", "ha0storage", "ha_innodb", "ha_innopart", "ha_prototypes", "handler0alter", "hash0hash", "i_s", "ib0mutex", "ibuf0ibuf", "ibuf0types", "lexyy", "lob0lob", "lock0iter", "lock0lock", "lock0prdt", "lock0priv", "lock0types", "lock0wait", "log0log", "log0recv", "log0write", "mach0data", "mem", "mem0mem", "memory", "mtr0log", "mtr0mtr", "mtr0types", "os0atomic", "os0event", "os0file", "os0numa", "os0once", "os0proc", "os0thread", "page", "page0cur", "page0page", "page0size", "page0types", "page0zip", "pars0grm", "pars0lex", "pars0opt", "pars0pars", "pars0sym", "pars0types", "que0que", "que0types", "read0read", "read0types", "rec", "rem0cmp", "rem0rec", "rem0types", "row0ext", "row0ftsort", "row0import", "row0ins", "row0log", "row0merge", "row0mysql", "row0purge", "row0quiesce", "row0row", "row0sel", "row0types", "row0uins", "row0umod", "row0undo", "row0upd", "row0vers", "sess0sess", "srv0conc", "srv0mon", "srv0srv", "srv0start", "srv0tmp", "sync0arr", "sync0debug", "sync0policy", "sync0sharded_rw", "sync0rw", "sync0sync", "sync0types", "trx0i_s", "trx0purge", "trx0rec", "trx0roll", "trx0rseg", "trx0sys", "trx0trx", "trx0types", "trx0undo", "trx0xa", "usr0sess", "usr0types", "ut", "ut0byte", "ut0counter", "ut0crc32", "ut0dbg", "ut0link_buf", "ut0list", "ut0lock_free_hash", "ut0lst", "ut0mem", "ut0mutex", "ut0new", "ut0pool", "ut0rbt", "ut0rnd", "ut0sort", "ut0stage", "ut0ut", "ut0vec", "ut0wqueue", "zipdecompress", }; static constexpr size_t n_auto = UT_ARR_SIZE(auto_event_names); extern PSI_memory_key auto_event_keys[n_auto]; extern PSI_memory_info pfs_info_auto[n_auto]; /** gcc 5 fails to evalutate costexprs at compile time. */ #if defined(__GNUG__) && (__GNUG__ == 5) /** Compute whether a string begins with a given prefix, compile-time. @param[in] a first string, taken to be zero-terminated @param[in] b second string (prefix to search for) @param[in] b_len length in bytes of second string @param[in] index character index to start comparing at @return whether b is a prefix of a */ constexpr bool ut_string_begins_with(const char *a, const char *b, size_t b_len, size_t index = 0) { return (index == b_len || (a[index] == b[index] && ut_string_begins_with(a, b, b_len, index + 1))); } /** Find the length of the filename without its file extension. @param[in] file filename, with extension but without directory @param[in] index character index to start scanning for extension separator at @return length, in bytes */ constexpr size_t ut_len_without_extension(const char *file, size_t index = 0) { return ((file[index] == '\0' || file[index] == '.') ? index : ut_len_without_extension(file, index + 1)); } /** Retrieve a memory key (registered with PFS), given the file name of the caller. @param[in] file portion of the filename - basename, with extension @param[in] len length of the filename to check for @param[in] index index of first PSI key to check @return registered memory key or PSI_NOT_INSTRUMENTED if not found */ constexpr PSI_memory_key ut_new_get_key_by_base_file(const char *file, size_t len, size_t index = 0) { return ((index == n_auto) ? PSI_NOT_INSTRUMENTED : (ut_string_begins_with(auto_event_names[index], file, len) ? auto_event_keys[index] : ut_new_get_key_by_base_file(file, len, index + 1))); } /** Retrieve a memory key (registered with PFS), given the file name of the caller. @param[in] file portion of the filename - basename, with extension @return registered memory key or PSI_NOT_INSTRUMENTED if not found */ constexpr PSI_memory_key ut_new_get_key_by_file(const char *file) { return (ut_new_get_key_by_base_file(file, ut_len_without_extension(file))); } #define UT_NEW_THIS_FILE_PSI_KEY ut_new_get_key_by_file(MY_BASENAME) #else /* __GNUG__ == 5 */ /** Compute whether a string begins with a given prefix, compile-time. @param[in] a first string, taken to be zero-terminated @param[in] b second string (prefix to search for) @param[in] b_len length in bytes of second string @return whether b is a prefix of a */ constexpr bool ut_string_begins_with(const char *a, const char *b, size_t b_len) { for (size_t i = 0; i < b_len; ++i) { if (a[i] != b[i]) { return false; } } return true; } /** Find the length of the filename without its file extension. @param[in] file filename, with extension but without directory @return length, in bytes */ constexpr size_t ut_len_without_extension(const char *file) { for (size_t i = 0;; ++i) { if (file[i] == '\0' || file[i] == '.') { return i; } } } /** Retrieve a memory key (registered with PFS), given the file name of the caller. @param[in] file portion of the filename - basename, with extension @param[in] len length of the filename to check for @return index to registered memory key or -1 if not found */ constexpr int ut_new_get_key_by_base_file(const char *file, size_t len) { for (size_t i = 0; i < n_auto; ++i) { if (ut_string_begins_with(auto_event_names[i], file, len)) { return i; } } return -1; } /** Retrieve a memory key (registered with PFS), given the file name of the caller. @param[in] file portion of the filename - basename, with extension @return index to memory key or -1 if not found */ constexpr int ut_new_get_key_by_file(const char *file) { return ut_new_get_key_by_base_file(file, ut_len_without_extension(file)); } // Sending an expression through a template variable forces the compiler to // evaluate the expression at compile time (constexpr in itself has no such // guarantee, only that the compiler is allowed). template struct force_constexpr { static constexpr int value = Value; }; #define UT_NEW_THIS_FILE_PSI_INDEX \ (force_constexpr::value) #define UT_NEW_THIS_FILE_PSI_KEY \ (UT_NEW_THIS_FILE_PSI_INDEX == -1 \ ? PSI_NOT_INSTRUMENTED \ : auto_event_keys[UT_NEW_THIS_FILE_PSI_INDEX]) #endif /* __GNUG__ == 5 */ #endif /* UNIV_PFS_MEMORY */ /** A structure that holds the necessary data for performance schema accounting. An object of this type is put in front of each allocated block of memory when allocation is done by ut_allocator::allocate(). This is because the data is needed even when freeing the memory. Users of ut_allocator::allocate_large() are responsible for maintaining this themselves. */ struct ut_new_pfx_t { #ifdef UNIV_PFS_MEMORY /** Performance schema key. Assigned to a name at startup via PSI_MEMORY_CALL(register_memory)() and later used for accounting allocations and deallocations with PSI_MEMORY_CALL(memory_alloc)(key, size, owner) and PSI_MEMORY_CALL(memory_free)(key, size, owner). */ PSI_memory_key m_key; /** Thread owner. Instrumented thread that owns the allocated memory. This state is used by the performance schema to maintain per thread statistics, when memory is given from thread A to thread B. */ struct PSI_thread *m_owner; #endif /* UNIV_PFS_MEMORY */ /** Size of the allocated block in bytes, including this prepended aux structure (for ut_allocator::allocate()). For example if InnoDB code requests to allocate 100 bytes, and sizeof(ut_new_pfx_t) is 16, then 116 bytes are allocated in total and m_size will be 116. ut_allocator::allocate_large() does not prepend this struct to the allocated block and its users are responsible for maintaining it and passing it later to ut_allocator::deallocate_large(). */ size_t m_size; #if SIZEOF_VOIDP == 4 /** Pad the header size to a multiple of 64 bits on 32-bit systems, so that the payload will be aligned to 64 bits. */ size_t pad; #endif }; /** Allocator class for allocating memory from inside std::* containers. */ template class ut_allocator { public: typedef T *pointer; typedef const T *const_pointer; typedef T &reference; typedef const T &const_reference; typedef T value_type; typedef size_t size_type; typedef ptrdiff_t difference_type; /** Default constructor. @param[in] key performance schema key. */ explicit ut_allocator(PSI_memory_key key = PSI_NOT_INSTRUMENTED) : #ifdef UNIV_PFS_MEMORY m_key(key), #endif /* UNIV_PFS_MEMORY */ m_oom_fatal(true) { } /** Constructor from allocator of another type. @param[in] other the allocator to copy. */ template ut_allocator(const ut_allocator &other) : #ifdef UNIV_PFS_MEMORY m_key(other.get_mem_key()), #endif /* UNIV_PFS_MEMORY */ m_oom_fatal(other.is_oom_fatal()) { } /** When out of memory (OOM) happens, report error and do not make it fatal. @return a reference to the allocator. */ ut_allocator &set_oom_not_fatal() { m_oom_fatal = false; return (*this); } /** Check if allocation failure is a fatal error. @return true if allocation failure is fatal, false otherwise. */ bool is_oom_fatal() const { return (m_oom_fatal); } #ifdef UNIV_PFS_MEMORY /** Get the performance schema key to use for tracing allocations. @return performance schema key */ PSI_memory_key get_mem_key() const { /* note: keep this as simple getter as is used by copy constructor */ return (m_key); } #endif /* UNIV_PFS_MEMORY */ /** Return the maximum number of objects that can be allocated by this allocator. */ size_type max_size() const { const size_type s_max = std::numeric_limits::max(); #ifdef UNIV_PFS_MEMORY return ((s_max - sizeof(ut_new_pfx_t)) / sizeof(T)); #else return (s_max / sizeof(T)); #endif /* UNIV_PFS_MEMORY */ } /** Allocate a chunk of memory that can hold 'n_elements' objects of type 'T' and trace the allocation. If the allocation fails this method may throw an exception. This is mandated by the standard and if it returns NULL instead, then STL containers that use it (e.g. std::vector) may get confused. After successful allocation the returned pointer must be passed to ut_allocator::deallocate() when no longer needed. @param[in] n_elements number of elements @param[in] hint pointer to a nearby memory location, unused by this implementation @param[in] key performance schema key @param[in] set_to_zero if true, then the returned memory is initialized with 0x0 bytes. @param[in] throw_on_error if true, then exception is throw on allocation failure @return pointer to the allocated memory */ pointer allocate(size_type n_elements, const_pointer hint = NULL, PSI_memory_key key = PSI_NOT_INSTRUMENTED, bool set_to_zero = false, bool throw_on_error = true) { if (n_elements == 0) { return (NULL); } if (n_elements > max_size()) { if (throw_on_error) { throw(std::bad_alloc()); } else { return (NULL); } } void *ptr; size_t total_bytes = n_elements * sizeof(T); #ifdef UNIV_PFS_MEMORY /* The header size must not ruin the 64-bit alignment on 32-bit systems. Some allocated structures use 64-bit fields. */ ut_ad((sizeof(ut_new_pfx_t) & 7) == 0); total_bytes += sizeof(ut_new_pfx_t); #endif /* UNIV_PFS_MEMORY */ for (size_t retries = 1;; retries++) { if (set_to_zero) { ptr = calloc(1, total_bytes); } else { ptr = malloc(total_bytes); } if (ptr != NULL || retries >= alloc_max_retries) { break; } os_thread_sleep(1000000 /* 1 second */); } if (ptr == NULL) { ib::fatal_or_error(m_oom_fatal) << "Cannot allocate " << total_bytes << " bytes of memory after " << alloc_max_retries << " retries over " << alloc_max_retries << " seconds. OS error: " << strerror(errno) << " (" << errno << "). " << OUT_OF_MEMORY_MSG; if (throw_on_error) { throw(std::bad_alloc()); } else { return (NULL); } } #ifdef UNIV_PFS_MEMORY ut_new_pfx_t *pfx = static_cast(ptr); allocate_trace(total_bytes, key, pfx); return (reinterpret_cast(pfx + 1)); #else return (reinterpret_cast(ptr)); #endif /* UNIV_PFS_MEMORY */ } /** Free a memory allocated by allocate() and trace the deallocation. @param[in,out] ptr pointer to memory to free @param[in] n_elements number of elements allocated (unused) */ void deallocate(pointer ptr, size_type n_elements = 0) { if (ptr == NULL) { return; } #ifdef UNIV_PFS_MEMORY ut_new_pfx_t *pfx = reinterpret_cast(ptr) - 1; deallocate_trace(pfx); free(pfx); #else free(ptr); #endif /* UNIV_PFS_MEMORY */ } /** Create an object of type 'T' using the value 'val' over the memory pointed by 'p'. */ void construct(pointer p, const T &val) { new (p) T(val); } /** Destroy an object pointed by 'p'. */ void destroy(pointer p) { p->~T(); } /** Return the address of an object. */ pointer address(reference x) const { return (&x); } /** Return the address of a const object. */ const_pointer address(const_reference x) const { return (&x); } template struct rebind { typedef ut_allocator other; }; /* The following are custom methods, not required by the standard. */ #ifdef UNIV_PFS_MEMORY /** realloc(3)-like method. The passed in ptr must have been returned by allocate() and the pointer returned by this method must be passed to deallocate() when no longer needed. @param[in,out] ptr old pointer to reallocate @param[in] n_elements new number of elements to allocate @param[in] key Performance schema key to allocate under @return newly allocated memory */ pointer reallocate(void *ptr, size_type n_elements, PSI_memory_key key) { if (n_elements == 0) { deallocate(static_cast(ptr)); return (NULL); } if (ptr == NULL) { return (allocate(n_elements, NULL, key, false, false)); } if (n_elements > max_size()) { return (NULL); } ut_new_pfx_t *pfx_old; ut_new_pfx_t *pfx_new; size_t total_bytes; pfx_old = reinterpret_cast(ptr) - 1; total_bytes = n_elements * sizeof(T) + sizeof(ut_new_pfx_t); for (size_t retries = 1;; retries++) { pfx_new = static_cast(realloc(pfx_old, total_bytes)); if (pfx_new != NULL || retries >= alloc_max_retries) { break; } os_thread_sleep(1000000 /* 1 second */); } if (pfx_new == NULL) { ib::fatal_or_error(m_oom_fatal) << "Cannot reallocate " << total_bytes << " bytes of memory after " << alloc_max_retries << " retries over " << alloc_max_retries << " seconds. OS error: " << strerror(errno) << " (" << errno << "). " << OUT_OF_MEMORY_MSG; /* not reached */ return (NULL); } /* pfx_new still contains the description of the old block that was presumably freed by realloc(). */ deallocate_trace(pfx_new); /* pfx_new is set here to describe the new block. */ allocate_trace(total_bytes, key, pfx_new); return (reinterpret_cast(pfx_new + 1)); } /** Allocate, trace the allocation and construct 'n_elements' objects of type 'T'. If the allocation fails or if some of the constructors throws an exception, then this method will return NULL. It does not throw exceptions. After successful completion the returned pointer must be passed to delete_array() when no longer needed. @param[in] n_elements number of elements to allocate @param[in] key Performance schema key to allocate under @return pointer to the first allocated object or NULL */ pointer new_array(size_type n_elements, PSI_memory_key key) { static_assert(std::is_default_constructible::value, "Array element type must be default-constructible"); T *p = allocate(n_elements, NULL, key, false, false); if (p == NULL) { return (NULL); } T *first = p; size_type i; try { for (i = 0; i < n_elements; i++) { new (p) T; ++p; } } catch (...) { for (size_type j = 0; j < i; j++) { --p; p->~T(); } deallocate(first); throw; } return (first); } /** Destroy, deallocate and trace the deallocation of an array created by new_array(). @param[in,out] ptr pointer to the first object in the array */ void delete_array(T *ptr) { if (ptr == NULL) { return; } const size_type n_elements = n_elements_allocated(ptr); T *p = ptr + n_elements - 1; for (size_type i = 0; i < n_elements; i++) { p->~T(); --p; } deallocate(ptr); } #endif /* UNIV_PFS_MEMORY */ /** Allocate a large chunk of memory that can hold 'n_elements' objects of type 'T' and trace the allocation. @param[in] n_elements number of elements @param[out] pfx storage for the description of the allocated memory. The caller must provide space for this one and keep it until the memory is no longer needed and then pass it to deallocate_large(). @return pointer to the allocated memory or NULL */ pointer allocate_large(size_type n_elements, ut_new_pfx_t *pfx) { if (n_elements == 0 || n_elements > max_size()) { return (NULL); } ulint n_bytes = n_elements * sizeof(T); pointer ptr = reinterpret_cast(os_mem_alloc_large(&n_bytes)); #ifdef UNIV_PFS_MEMORY if (ptr != NULL) { allocate_trace(n_bytes, PSI_NOT_INSTRUMENTED, pfx); } #else pfx->m_size = n_bytes; #endif /* UNIV_PFS_MEMORY */ return (ptr); } /** Free a memory allocated by allocate_large() and trace the deallocation. @param[in,out] ptr pointer to memory to free @param[in] pfx descriptor of the memory, as returned by allocate_large(). */ void deallocate_large(pointer ptr, const ut_new_pfx_t *pfx) { #ifdef UNIV_PFS_MEMORY deallocate_trace(pfx); #endif /* UNIV_PFS_MEMORY */ os_mem_free_large(ptr, pfx->m_size); } private: #ifdef UNIV_PFS_MEMORY /** Retrieve the size of a memory block allocated by new_array(). @param[in] ptr pointer returned by new_array(). @return size of memory block */ size_type n_elements_allocated(const_pointer ptr) { const ut_new_pfx_t *pfx = reinterpret_cast(ptr) - 1; const size_type user_bytes = pfx->m_size - sizeof(ut_new_pfx_t); ut_ad(user_bytes % sizeof(T) == 0); return (user_bytes / sizeof(T)); } /** Trace a memory allocation. @param[in] size number of bytes that were allocated @param[in] key Performance Schema key @param[out] pfx placeholder to store the info which will be needed when freeing the memory */ void allocate_trace(size_t size, PSI_memory_key key, ut_new_pfx_t *pfx) { if (m_key != PSI_NOT_INSTRUMENTED) { key = m_key; } pfx->m_key = PSI_MEMORY_CALL(memory_alloc)(key, size, &pfx->m_owner); pfx->m_size = size; } /** Trace a memory deallocation. @param[in] pfx info for the deallocation */ void deallocate_trace(const ut_new_pfx_t *pfx) { PSI_MEMORY_CALL(memory_free)(pfx->m_key, pfx->m_size, pfx->m_owner); } #endif /* UNIV_PFS_MEMORY */ /* Assignment operator, not used, thus disabled (private. */ template void operator=(const ut_allocator &); #ifdef UNIV_PFS_MEMORY /** Performance schema key. */ PSI_memory_key m_key; #endif /* UNIV_PFS_MEMORY */ /** A flag to indicate whether out of memory (OOM) error is considered fatal. If true, it is fatal. */ bool m_oom_fatal; }; /** Compare two allocators of the same type. As long as the type of A1 and A2 is the same, a memory allocated by A1 could be freed by A2 even if the pfs mem key is different. */ template inline bool operator==(const ut_allocator &lhs, const ut_allocator &rhs) { return (true); } /** Compare two allocators of the same type. */ template inline bool operator!=(const ut_allocator &lhs, const ut_allocator &rhs) { return (!(lhs == rhs)); } #ifdef UNIV_PFS_MEMORY /** Allocate, trace the allocation and construct an object. Use this macro instead of 'new' within InnoDB. For example: instead of Foo* f = new Foo(args); use: Foo* f = UT_NEW(Foo(args), mem_key_some); Upon failure to allocate the memory, this macro may return NULL. It will not throw exceptions. After successful allocation the returned pointer must be passed to UT_DELETE() when no longer needed. @param[in] expr any expression that could follow "new" @param[in] key performance schema memory tracing key @return pointer to the created object or NULL */ #define UT_NEW(expr, key) \ /* Placement new will return NULL and not attempt to construct an \ object if the passed in pointer is NULL, e.g. if allocate() has \ failed to allocate memory and has returned NULL. */ \ ::new (ut_allocator(key).allocate(sizeof expr, NULL, key, false, \ false)) expr /** Allocate, trace the allocation and construct an object. Use this macro instead of 'new' within InnoDB and instead of UT_NEW() when creating a dedicated memory key is not feasible. For example: instead of Foo* f = new Foo(args); use: Foo* f = UT_NEW_NOKEY(Foo(args)); Upon failure to allocate the memory, this macro may return NULL. It will not throw exceptions. After successful allocation the returned pointer must be passed to UT_DELETE() when no longer needed. @param[in] expr any expression that could follow "new" @return pointer to the created object or NULL */ #define UT_NEW_NOKEY(expr) UT_NEW(expr, PSI_NOT_INSTRUMENTED) /** Destroy, deallocate and trace the deallocation of an object created by UT_NEW() or UT_NEW_NOKEY(). We can't instantiate ut_allocator without having the type of the object, thus we redirect this to a template function. */ #define UT_DELETE(ptr) ut_delete(ptr) /** Destroy and account object created by UT_NEW() or UT_NEW_NOKEY(). @param[in,out] ptr pointer to the object */ template inline void ut_delete(T *ptr) { if (ptr == NULL) { return; } ut_allocator allocator; allocator.destroy(ptr); allocator.deallocate(ptr); } /** Allocate and account 'n_elements' objects of type 'type'. Use this macro to allocate memory within InnoDB instead of 'new[]'. The returned pointer must be passed to UT_DELETE_ARRAY(). @param[in] type type of objects being created @param[in] n_elements number of objects to create @param[in] key performance schema memory tracing key @return pointer to the first allocated object or NULL */ #define UT_NEW_ARRAY(type, n_elements, key) \ ut_allocator(key).new_array(n_elements, UT_NEW_THIS_FILE_PSI_KEY) /** Allocate and account 'n_elements' objects of type 'type'. Use this macro to allocate memory within InnoDB instead of 'new[]' and instead of UT_NEW_ARRAY() when it is not feasible to create a dedicated key. @param[in] type type of objects being created @param[in] n_elements number of objects to create @return pointer to the first allocated object or NULL */ #define UT_NEW_ARRAY_NOKEY(type, n_elements) \ UT_NEW_ARRAY(type, n_elements, PSI_NOT_INSTRUMENTED) /** Destroy, deallocate and trace the deallocation of an array created by UT_NEW_ARRAY() or UT_NEW_ARRAY_NOKEY(). We can't instantiate ut_allocator without having the type of the object, thus we redirect this to a template function. */ #define UT_DELETE_ARRAY(ptr) ut_delete_array(ptr) /** Destroy and account objects created by UT_NEW_ARRAY() or UT_NEW_ARRAY_NOKEY(). @param[in,out] ptr pointer to the first object in the array */ template inline void ut_delete_array(T *ptr) { ut_allocator().delete_array(ptr); } #define ut_malloc(n_bytes, key) \ static_cast(ut_allocator(key).allocate( \ n_bytes, NULL, UT_NEW_THIS_FILE_PSI_KEY, false, false)) #define ut_zalloc(n_bytes, key) \ static_cast(ut_allocator(key).allocate( \ n_bytes, NULL, UT_NEW_THIS_FILE_PSI_KEY, true, false)) #define ut_malloc_nokey(n_bytes) \ static_cast( \ ut_allocator(PSI_NOT_INSTRUMENTED) \ .allocate(n_bytes, NULL, UT_NEW_THIS_FILE_PSI_KEY, false, false)) #define ut_zalloc_nokey(n_bytes) \ static_cast( \ ut_allocator(PSI_NOT_INSTRUMENTED) \ .allocate(n_bytes, NULL, UT_NEW_THIS_FILE_PSI_KEY, true, false)) #define ut_zalloc_nokey_nofatal(n_bytes) \ static_cast( \ ut_allocator(PSI_NOT_INSTRUMENTED) \ .set_oom_not_fatal() \ .allocate(n_bytes, NULL, UT_NEW_THIS_FILE_PSI_KEY, true, false)) #define ut_realloc(ptr, n_bytes) \ static_cast(ut_allocator(PSI_NOT_INSTRUMENTED) \ .reallocate(ptr, n_bytes, UT_NEW_THIS_FILE_PSI_KEY)) #define ut_free(ptr) \ ut_allocator(PSI_NOT_INSTRUMENTED) \ .deallocate(reinterpret_cast(ptr)) #else /* UNIV_PFS_MEMORY */ /* Fallbacks when memory tracing is disabled at compile time. */ #define UT_NEW(expr, key) ::new (std::nothrow) expr #define UT_NEW_NOKEY(expr) ::new (std::nothrow) expr #define UT_DELETE(ptr) ::delete ptr #define UT_NEW_ARRAY(type, n_elements, key) \ ::new (std::nothrow) type[n_elements] #define UT_NEW_ARRAY_NOKEY(type, n_elements) \ ::new (std::nothrow) type[n_elements] #define UT_DELETE_ARRAY(ptr) ::delete[] ptr #define ut_malloc(n_bytes, key) ::malloc(n_bytes) #define ut_zalloc(n_bytes, key) ::calloc(1, n_bytes) #define ut_malloc_nokey(n_bytes) ::malloc(n_bytes) #define ut_zalloc_nokey(n_bytes) ::calloc(1, n_bytes) #define ut_zalloc_nokey_nofatal(n_bytes) ::calloc(1, n_bytes) #define ut_realloc(ptr, n_bytes) ::realloc(ptr, n_bytes) #define ut_free(ptr) ::free(ptr) #endif /* UNIV_PFS_MEMORY */ /** This is a forward declaration, which is because of the circular dependency between ut0new.h and ut0byte.h (going through univ.i and sync0types.h). I've managed to observe problem when building MEB and this helps then. */ UNIV_INLINE void *ut_align(const void *ptr, ulint align_no); /** Abstract class to manage an object that is aligned to specified number of bytes. @tparam T_Type type of the object that is going to be managed @tparam T_Align_to number of bytes to align to */ template class aligned_memory { public: virtual ~aligned_memory() { if (!this->is_object_empty()) { this->free_memory(); } } virtual void destroy() = 0; /** Allows casting to managed objects type to use it directly */ operator T_Type *() const { ut_a(m_object != nullptr); return m_object; } /** Allows referencing the managed object as this was a normal pointer. */ T_Type *operator->() const { ut_a(m_object != nullptr); return m_object; } protected: /** Checks if no object is currently being managed. */ bool is_object_empty() const { return m_object == nullptr; } /** Allocates memory for a new object and prepares aligned address for the object. @param[in] size Number of bytes to be delivered for the aligned object. Number of bytes actually allocated will be higher. */ T_Type *allocate(size_t size) { static_assert(T_Align_to > 0, "Incorrect alignment parameter"); ut_a(m_memory == nullptr); ut_a(m_object == nullptr); m_memory = ut_zalloc_nokey(size + T_Align_to - 1); m_object = static_cast(::ut_align(m_memory, T_Align_to)); return m_object; } /** Releases memory used to store the object. */ void free_memory() { ut_a(m_memory != nullptr); ut_a(m_object != nullptr); ut_free(m_memory); m_memory = nullptr; m_object = nullptr; } private: /** Stores pointer to aligned object memory. */ T_Type *m_object = nullptr; /** Stores pointer to memory used to allocate the object. */ void *m_memory = nullptr; }; /** Manages an object that is aligned to specified number of bytes. @tparam T_Type type of the object that is going to be managed @tparam T_Align_to number of bytes to align to */ template class aligned_pointer : public aligned_memory { public: ~aligned_pointer() { if (!this->is_object_empty()) { this->destroy(); } } /** Allocates aligned memory for new object and constructs it there. @param[in] args arguments to be passed to object constructor */ template void create(T_Args... args) { new (this->allocate(sizeof(T_Type))) T_Type(std::forward(args)...); } /** Destroys the managed object and releases its memory. */ void destroy() { (*this)->~T_Type(); this->free_memory(); } }; /** Manages an array of objects. The first element is aligned to specified number of bytes. @tparam T_Type type of the object that is going to be managed @tparam T_Align_to number of bytes to align to */ template class aligned_array_pointer : public aligned_memory { public: /** Allocates aligned memory for new objects. Objects must be trivially constructible and destructible. @param[in] size Number of elements to allocate. */ void create(size_t size) { #if !(defined __GNUC__ && __GNUC__ <= 4) static_assert(std::is_trivially_default_constructible::value, "Aligned array element type must be " "trivially default-constructible"); #endif m_size = size; this->allocate(sizeof(T_Type) * m_size); } /** Deallocates memory of array created earlier. */ void destroy() { static_assert(std::is_trivially_destructible::value, "Aligned array element type must be " "trivially destructible"); this->free_memory(); } /** Accesses specified index in the allocated array. @param[in] index index of element in array to get reference to */ T_Type &operator[](size_t index) const { ut_a(index < m_size); return ((T_Type *)*this)[index]; } private: /** Size of the allocated array. */ size_t m_size; }; namespace ut { /** Specialization of basic_ostringstream which uses ut_allocator. Please note that it's .str() method returns std::basic_string which is not std::string, so it has similar API (in particular .c_str()), but you can't assign it to regular, std::string. */ using ostringstream = std::basic_ostringstream, ut_allocator>; /** Specialization of vector which uses ut_allocator. */ template using vector = std::vector>; } // namespace ut #endif /* ut0new_h */