/***************************************************************************** Copyright (c) 2013, 2019, Oracle and/or its affiliates. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *****************************************************************************/ /** @file include/dyn0buf.h The dynamically allocated buffer implementation Created 2013-03-16 Sunny Bains *******************************************************/ #ifndef dyn0buf_h #define dyn0buf_h #include "dyn0types.h" #include "mem0mem.h" #include "univ.i" #include "ut0lst.h" /** Class that manages dynamic buffers. It uses a UT_LIST of dyn_buf_t::block_t instances. We don't use STL containers in order to avoid the overhead of heap calls. Using a custom memory allocator doesn't solve the problem either because we have to get the memory from somewhere. We can't use the block_t::m_data as the backend for the custom allocator because we would like the data in the blocks to be contiguous. */ template class dyn_buf_t { public: class block_t; typedef UT_LIST_NODE_T(block_t) block_node_t; typedef UT_LIST_BASE_NODE_T(block_t) block_list_t; class block_t { public: block_t() { ut_ad(MAX_DATA_SIZE <= (2 << 15)); init(); } ~block_t() {} /** Gets the number of used bytes in a block. @return number of bytes used */ ulint used() const MY_ATTRIBUTE((warn_unused_result)) { return (static_cast(m_used & ~DYN_BLOCK_FULL_FLAG)); } /** Gets pointer to the start of data. @return pointer to data */ byte *start() MY_ATTRIBUTE((warn_unused_result)) { return (m_data); } /** @return start of data - non const version */ byte *begin() MY_ATTRIBUTE((warn_unused_result)) { return (m_data); } /** @return end of used data - non const version */ byte *end() MY_ATTRIBUTE((warn_unused_result)) { return (begin() + m_used); } /** @return start of data - const version */ const byte *begin() const MY_ATTRIBUTE((warn_unused_result)) { return (m_data); } /** @return end of used data - const version */ const byte *end() const MY_ATTRIBUTE((warn_unused_result)) { return (begin() + m_used); } private: /** @return pointer to start of reserved space */ template Type push(ib_uint32_t size) { Type ptr = reinterpret_cast(end()); m_used += size; ut_ad(m_used <= static_cast(MAX_DATA_SIZE)); return (ptr); } /** Grow the stack. */ void close(const byte *ptr) { /* Check that it is within bounds */ ut_ad(ptr >= begin()); ut_ad(ptr <= begin() + m_buf_end); /* We have done the boundary check above */ m_used = static_cast(ptr - begin()); ut_ad(m_used <= MAX_DATA_SIZE); ut_d(m_buf_end = 0); } /** Initialise the block */ void init() { m_used = 0; ut_d(m_buf_end = 0); ut_d(m_magic_n = DYN_BLOCK_MAGIC_N); } private: #ifdef UNIV_DEBUG /** If opened then this is the buffer end offset, else 0 */ ulint m_buf_end; /** Magic number (DYN_BLOCK_MAGIC_N) */ ulint m_magic_n; #endif /* UNIV_DEBUG */ /** SIZE - sizeof(m_node) + sizeof(m_used) */ static constexpr auto MAX_DATA_SIZE = SIZE; /** Storage */ byte m_data[MAX_DATA_SIZE]; /** Doubly linked list node. */ block_node_t m_node; /** number of data bytes used in this block; DYN_BLOCK_FULL_FLAG is set when the block becomes full */ ib_uint32_t m_used; friend class dyn_buf_t; }; static constexpr auto MAX_DATA_SIZE = block_t::MAX_DATA_SIZE; /** Default constructor */ dyn_buf_t() : m_heap(), m_size() { UT_LIST_INIT(m_list, &block_t::m_node); push_back(&m_first_block); } /** Destructor */ ~dyn_buf_t() { erase(); } /** Reset the buffer vector */ void erase() { if (m_heap != NULL) { mem_heap_free(m_heap); m_heap = NULL; /* Initialise the list and add the first block. */ UT_LIST_INIT(m_list, &block_t::m_node); push_back(&m_first_block); } else { m_first_block.init(); ut_ad(UT_LIST_GET_LEN(m_list) == 1); } m_size = 0; } /** Makes room on top and returns a pointer to a buffer in it. After copying the elements, the caller must close the buffer using close(). @param size in bytes of the buffer; MUST be <= MAX_DATA_SIZE! @return pointer to the buffer */ byte *open(ulint size) MY_ATTRIBUTE((warn_unused_result)) { ut_ad(size > 0); ut_ad(size <= MAX_DATA_SIZE); block_t *block; block = has_space(size) ? back() : add_block(); ut_ad(block->m_used <= MAX_DATA_SIZE); ut_d(block->m_buf_end = block->m_used + size); return (block->end()); } /** Closes the buffer returned by open. @param ptr end of used space */ void close(const byte *ptr) { ut_ad(UT_LIST_GET_LEN(m_list) > 0); block_t *block = back(); m_size -= block->used(); block->close(ptr); m_size += block->used(); } /** Makes room on top and returns a pointer to the added element. The caller must copy the element to the pointer returned. @param size in bytes of the element @return pointer to the element */ template Type push(ib_uint32_t size) { ut_ad(size > 0); ut_ad(size <= MAX_DATA_SIZE); block_t *block; block = has_space(size) ? back() : add_block(); m_size += size; /* See ISO C++03 14.2/4 for why "template" is required. */ return (block->template push(size)); } /** Pushes n bytes. @param ptr string to write @param len string length */ void push(const byte *ptr, ib_uint32_t len) { while (len > 0) { ib_uint32_t n_copied; if (len >= MAX_DATA_SIZE) { n_copied = MAX_DATA_SIZE; } else { n_copied = len; } ::memmove(push(n_copied), ptr, n_copied); ptr += n_copied; len -= n_copied; } } /** Returns a pointer to an element in the buffer. const version. @param pos position of element in bytes from start @return pointer to element */ template const Type at(ulint pos) const { block_t *block = const_cast(const_cast(this)->find(pos)); return (reinterpret_cast(block->begin() + pos)); } /** Returns a pointer to an element in the buffer. non const version. @param pos position of element in bytes from start @return pointer to element */ template Type at(ulint pos) { block_t *block = const_cast(find(pos)); return (reinterpret_cast(block->begin() + pos)); } /** Returns the size of the total stored data. @return data size in bytes */ ulint size() const MY_ATTRIBUTE((warn_unused_result)) { #ifdef UNIV_DEBUG ulint total_size = 0; for (const block_t *block = UT_LIST_GET_FIRST(m_list); block != NULL; block = UT_LIST_GET_NEXT(m_node, block)) { total_size += block->used(); } ut_ad(total_size == m_size); #endif /* UNIV_DEBUG */ return (m_size); } /** Iterate over each block and call the functor. @return false if iteration was terminated. */ template bool for_each_block(Functor &functor) const { for (const block_t *block = UT_LIST_GET_FIRST(m_list); block != NULL; block = UT_LIST_GET_NEXT(m_node, block)) { if (!functor(block)) { return (false); } } return (true); } /** Iterate over all the blocks in reverse and call the iterator @return false if iteration was terminated. */ template bool for_each_block_in_reverse(Functor &functor) const { for (block_t *block = UT_LIST_GET_LAST(m_list); block != NULL; block = UT_LIST_GET_PREV(m_node, block)) { if (!functor(block)) { return (false); } } return (true); } /** @return the first block */ block_t *front() MY_ATTRIBUTE((warn_unused_result)) { ut_ad(UT_LIST_GET_LEN(m_list) > 0); return (UT_LIST_GET_FIRST(m_list)); } /** @return true if m_first_block block was not filled fully */ bool is_small() const MY_ATTRIBUTE((warn_unused_result)) { return (m_heap == NULL); } private: // Disable copying dyn_buf_t(dyn_buf_t &&) = delete; dyn_buf_t(const dyn_buf_t &) = delete; dyn_buf_t &operator=(dyn_buf_t &&) = delete; dyn_buf_t &operator=(const dyn_buf_t &) = delete; /** Add the block to the end of the list*/ void push_back(block_t *block) { block->init(); UT_LIST_ADD_LAST(m_list, block); } /** @return the last block in the list */ block_t *back() { return (UT_LIST_GET_LAST(m_list)); } /* @return true if request can be fullfilled */ bool has_space(ulint size) const { return (back()->m_used + size <= MAX_DATA_SIZE); } /* @return true if request can be fullfilled */ bool has_space(ulint size) { return (back()->m_used + size <= MAX_DATA_SIZE); } /** Find the block that contains the pos. @param pos absolute offset, it is updated to make it relative to the block @return the block containing the pos. */ block_t *find(ulint &pos) { block_t *block; ut_ad(UT_LIST_GET_LEN(m_list) > 0); for (block = UT_LIST_GET_FIRST(m_list); block != NULL; block = UT_LIST_GET_NEXT(m_node, block)) { if (pos < block->used()) { break; } pos -= block->used(); } ut_ad(block != NULL); ut_ad(block->used() >= pos); return (block); } /** Allocate and add a new block to m_list */ block_t *add_block() { block_t *block; if (m_heap == NULL) { m_heap = mem_heap_create(sizeof(*block)); } block = reinterpret_cast(mem_heap_alloc(m_heap, sizeof(*block))); push_back(block); return (block); } private: /** Heap to use for memory allocation */ mem_heap_t *m_heap; /** Allocated blocks */ block_list_t m_list; /** Total size used by all blocks */ ulint m_size; /** The default block, should always be the first element. This is for backwards compatibility and to avoid an extra heap allocation for small REDO log records */ block_t m_first_block; }; typedef dyn_buf_t mtr_buf_t; /** mtr_buf_t copier */ struct mtr_buf_copy_t { /** The copied buffer */ mtr_buf_t m_buf; /** Append a block to the redo log buffer. @return whether the appending should continue (always true here) */ bool operator()(const mtr_buf_t::block_t *block) { byte *buf = m_buf.open(block->used()); memcpy(buf, block->begin(), block->used()); m_buf.close(buf + block->used()); return (true); } }; #endif /* dyn0buf_h */